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This week we’ll continue to use our toy example dataset, a random sample of 5 observations from the mtcars
dataset pre-loaded in R. To generate this dataset, and again to fit a linear model between mpg and hp, I use
the following commands. The summary output for the model is given below as well.

library(tidyverse)

set.seed (1)
data<-slice_sample(mtcars,n=5)
model<-1m(mpg~hp,data)

summary (model)

##

## Call:

## 1m(formula = mpg ~ hp, data = data)

#i#

## Residuals:

## Pontiac Firebird Hornet 4 Drive Duster 360 Mazda RX4
## 1.0267 0.0892 -0.4944 -0.3108
## Mazda RX4 Wag

## -0.3108

##

## Coefficients:

#Hit Estimate Std. Error t value Pr(>|t|)

## (Intercept) 26.620484  0.937229 28.403 9.58e-05 *x*x

## hp -0.048270 0.005882 -8.207 0.00379 *x*

#H ——-

## Signif. codes: O ’**x> 0.001 ’*x’ 0.01 ’%’ 0.05 ’.” 0.1 7 > 1

##

## Residual standard error: 0.707 on 3 degrees of freedom

## Multiple R-squared: 0.9574, Adjusted R-squared: 0.9431

## F-statistic: 67.35 on 1 and 3 DF, p-value: 0.003787



Standard Errors

Since we are focusing on uncertainty this week, let’s analytically confirm the standard errors for our slope
given by R:
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As you can see, the standard error we computed by hand is very close to the one given by R, given rounding
€erTor.

Hypothesis Test

Now we may want to conduct statistical inference and see if our slope estimate is statistically significant.
First, we will conduct a hypothesis test. Our test will be to see if our coefficient is statistically different from
our specified null hypothesis, say 0. We will reject this null hypothesis and favor the alternative hypothesis
(B2 # 0) if the absolute value of our ¢ statistic is larger than the critical value of a Student ¢ distribution
(terit) at a certain confidence (significance) level, say 95%. Dougherty (2016, p. 548) states this ¢.,;; is 3.182.
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Thus, we reject the null that the coefficient is 0 since 7.74 > 3.182. In fact, the absolute value of our ¢
statistic is greater the given t..;; value at 99% confidence (5.841), but not at the 99.9% confidence level
(12.924). This is confirmed by the “stars’’ given in our model output.



Confidence Interval

What would the confidence interval be for our coefficient? At 95% confidence, it would be:

CI=p+ (s.e.(ég) X terit)
— —0.048 £ (0.0062 x 3.182)
= —0.048 + 0.02
= —0.068 < —0.048 < —0.028.

This is confirmed by the following R output, excepting for rounding error:

confint (model)

#i#t 2.5 % 97.5 %
## (Intercept) 23.63780249 29.6031664
## hp -0.06698859 -0.0295512

We could also calculate the confidence interval and plot it using the margins package:

library(margins)
model %>% margins() %>’ summary()

## factor AME SE z p lower  upper
## hp -0.0483 0.0059 -8.2066 0.0000 -0.0598 -0.0367

model 7>% margins() %> plot()
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Looking at Residuals

To touch on the plots that Paul was talking about in class, we can look at the residuals for our model.

plot(density(model$residuals))

density(x = model$residuals)
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Standardized residuals
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