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Summary. We extend the omitted variable bias framework with a suite of tools for sensitivity
analysis in regression models that does not require assumptions on the functional form of
the treatment assignment mechanism nor on the distribution of the unobserved confounders,
naturally handles multiple confounders, possibly acting non-linearly, exploits expert knowledge
to bound sensitivity parameters and can be easily computed by using only standard regression
results. In particular, we introduce two novel sensitivity measures suited for routine reporting.The
robustness value describes the minimum strength of association that unobserved confounding
would need to have, both with the treatment and with the outcome, to change the research
conclusions. The partial R2 of the treatment with the outcome shows how strongly confounders
explaining all the residual outcome variation would have to be associated with the treatment
to eliminate the estimated effect. Next, we offer graphical tools for elaborating on problematic
confounders, examining the sensitivity of point estimates and t-values, as well as ‘extreme
scenarios’. Finally, we describe problems with a common ‘benchmarking’ practice and introduce
a novel procedure to bound the strength of confounders formally on the basis of a comparison
with observed covariates. We apply these methods to a running example that estimates the
effect of exposure to violence on attitudes toward peace.
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1. Introduction

Observational research often seeks to estimate causal effects under a ‘no-unobserved-
confounding’ or ‘ignorability’ (conditional on observables) assumption (see for example Rosen-
baum and Rubin (1983a), Pearl (2009) and Imbens and Rubin (2015)). When making causal
claims from observational data, investigators marshal what evidence they can to argue that their
result is not due to confounding. In ‘natural’ and ‘quasi’-experiments, this often includes a qual-
itative account for why the treatment assignment is ‘as if ’ random conditional on a set of key
characteristics (see for example Angrist and Pischke (2008) and Dunning (2012)). Investigators
seeking to make causal claims from observational data are also instructed to show ‘balance
tests’ and ‘placebo tests’. Although, in some cases, null findings on these tests may be consistent
with the claim of no unobserved confounders, they are certainly not dispositive: it is unobserved
variables that we worry may be both ‘imbalanced’ and related to the outcome in problematic
ways. Fundamentally, causal inferences always require assumptions that are unverifiable from
the data (Pearl, 2009).

Thus, in addition to balance and placebo tests, investigators are advised to conduct ‘sensitivity
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analyses’ examining how fragile a result is against the possibility of unobserved confounding.
(Researchers may also wish to examine sensitivity to the choice of observed covariates; see
Leamer (1983, 2016).) In general, such analyses entail two components:

(a) describing the type of unobserved confounders—parameterized by their relation to the
treatment assignment, the outcome, or both—that would substantively change our con-
clusions about the estimated causal effect, and

(b) assisting the investigator in assessing the plausibility that such problematic confounding
might exist, which necessarily depends on the research design and expert knowledge
regarding the data-generating process.

A variety of sensitivity analyses have been proposed, dating back to Cornfield et al. (1959), with
more recent contributions including Rosenbaum and Rubin (1983b), Robins (1999), Frank
(2000), Rosenbaum (2002), Imbens (2003), Brumback et al. (2004), Frank et al. (2008, 2013),
Hosman et al. (2010), Imai et al. (2010), Vanderweele and Arah (2011), Blackwell (2013),
Carnegie et al. (2016b), Dorie et al. (2016), Middleton et al. (2016), Oster (2019) and Franks
et al. (2019). Yet, such sensitivity analyses remain underutilized. For instance, in political sci-
ence, out of 164 quantitative papers in the top three general interest publications (the American
Political Science Review, American Journal of Political Science and Journal of Politics) for 2017,
64 papers clearly described a causal identification strategy other than a randomized experiment.
Of these only four (6.25%) employed a formal sensitivity analysis beyond trying various spec-
ifications. In economics, Oster (2014) reported that most non-experimental empirical papers
utilized only informal robustness tests based on coefficient stability in the face of adding or
dropping covariates.

We argue that various factors contribute to this reluctant uptake. One is the complicated
nature and strong assumptions that many of these methods impose, sometimes involving re-
strictions on or even a complete description of the nature of the confounder. A second reason is
that, whereas training, convention and convenience dictate that users routinely report ‘regres-
sion tables’ (or perhaps coefficient plots) to convey the results of a regression, we lack readily
available quantities that aid in understanding and communicating how sensitive our results
are to potential unobserved confounding. Third, and most fundamentally, connecting the re-
sults of a formal sensitivity analysis to a cogent argument about what types of confounders
may exist in one’s research project is often difficult, particularly with research designs that do
not hinge on a credible argument regarding the (conditionally) ‘ignorable’, ‘exogenous’ or ‘as-
if random’ nature of the treatment assignment. To complicate things, some of the solutions
that are offered by the literature can lead users to erroneous conclusions (see Section 6 for
discussion).

In this paper we show how the familiar omitted variable bias (OVB) framework can be ex-
tended to address these challenges. We develop a suite of sensitivity analysis tools that do not
require assumptions on the functional form of the treatment assignment mechanism nor on the
distribution of the unobserved confounder and can be used to assess the sensitivity to multiple
confounders, whether they influence the treatment and outcome linearly or not.

We first introduce two novel measures of the sensitivity of linear regression coefficients:

(a) the ‘robustness value’ RV, which provides a convenient reference point to assess the overall
robustness of a coefficient to unobserved confounding. If the confounders’ association
to the treatment and to the outcome (measured in terms of partial R2) are both assumed
to be less than the robustness value, then such confounders cannot ‘explain away’ the
observed effect. And,
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(b) the proportion of variation in the outcome explained uniquely by the treatment, R2
Y∼D|X,

which reveals how strongly counfounders that explain 100% of the residual variance of
the outcome would have to be associated with the treatment to eliminate the effect.

Both measures can be easily computed from standard regression output: one needs only the
estimate’s t-value and the degrees of freedom. To advance standard practice across a variety of
disciplines, we propose routinely reporting RV and R2

Y∼D|X in regression tables.
Next, we offer graphical tools that investigators can use to refine their sensitivity analyses.

The first is close in spirit to the proposal of Imbens (2003)—a bivariate sensitivity contour plot,
parameterizing the confounder in terms of partial R2 values. However, contrary to Imbens’s
maximum likelihood approach, the OVB-based approach makes the underlying analysis simpler
to understand, easier to compute and more general. It side-steps assumptions on the functional
form of the treatment assignment and on the distribution of the (possibly multiple, non-linear)
confounders, and it easily extends contour plots to assess the sensitivity of t-values, p-values
or confidence intervals. This enables users to examine the types of confounders that would
alter their inferential conclusions, not just point estimates. The second is an ‘extreme scenario’
sensitivity plot, in which investigators make conservative assumptions about the portion of
otherwise unexplainend variance in the outcome that is due to confounders. One can then see
how strongly such confounders would need to be associated with the treatment to be problematic.
In the ‘worst case’ of these scenarios, the investigator assumes that all unexplained variation in
the outcome may be due to a confounder.

Finally, we introduce a novel bounding procedure that aids researchers in judging which con-
founders are plausible or could be ruled out, using the observed data in combination with expert
knowledge. Whereas prior work (Frank, 2000; Imbens, 2003; Hosman et al., 2010; Blackwell,
2013; Dorie et al., 2016; Carnegie et al., 2016a; Middleton et al., 2016; Hong et al., 2018) has
suggested an informal practice of benchmarking the unobserved confounding by comparison
with unadjusted statistics of observables, we show that this practice can generate misleading
conclusions due to the effects of confounding itself, even if the confounder is assumed to be
independent of the covariate(s) that are used for benchmarking. Instead, our approach formally
bounds the strength of unobserved confounding with the same strength (or a multiple thereof)
as a chosen observable or group of observables. These bounds are tight and may be especially
useful when investigators can credibly argue to have measured the most important determinants
(in terms of variance explained) of the treatment assignment or of the outcome.

In what follows, Section 2 describes the running example that will be used to illustrate the
tools throughout the text—a study of the effect of violence on attitudes toward peace in Darfur,
Sudan. Section 3 introduces the traditional OVB framework, how it can be used for a first
approach to sensitivity analysis and some of its shortcomings. Next, Section 4 shows how to
extend the traditional OVB with the partial R2 parameterization and Section 5 demonstrates
how these results lead to a rich set of tools for sensitivity analysis. We conclude by discussing how
our proposal seeks to increase the use of sensitivity analyses in practice and how it compares with
existing procedures, and highlighting important caveats when interpreting sensitivity results.

Open-source software for R (sensemakr (Cinelli and Hazlett, 2019) that implements the
methods that are presented here is available from https://cran.r-project.org/
package=sensemakr). A Shiny web application is also available from https://carlosci
nelli.shinyapps.io/robustness value/. Finally, code to replicate all the analyses can
be obtained from

https://rss.onlinelibrary.wiley.com/hub/journal/14679868/series-
b-datasets.
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2. Running example

In this section we briefly introduce the applied example that is used throughout the paper.
(We describe only the most relevant details; further information is available in Hazlett (2019).)
This serves as a background to illustrate how the tools that are developed here can be applied
to address problems that commonly arise in observational research. We emphasize that the
information that is produced by a sensitivity analysis is useful to the extent that researchers can
wield domain knowledge about the data-generating process to rule out the types of confounders
which are shown to be problematic. Thus, a real example helps to illustrate how such knowledge
could be employed.

2.1. Exposure to violence in Darfur
In Sudan’s western region of Darfur, a horrific campaign of violence against civilians began in
2003, sustaining high levels of violence through 2004 and killing an estimated 200000 people
(Flint and de Waal, 2008). It was deemed genocide by then Secretary of State Colin Powell and
has resulted in indictments of alleged genocide, war crimes and crimes against humanity in the
International Criminal Court.

In the current case, we are interested in learning how being physically harmed during
attacks on one’s village changed individual attitudes towards peace. Clearly, we cannot ran-
domize who is exposed to such violence. However, the means by which violence was distributed
provide a tragic natural experiment. Violence against civilians during this time included both
aerial bombardments by government aircraft, and attacks by a pro-government militia called
the Janjaweed. Although some villages were singled out for more or less violence, within a given
village violence was arguably indiscriminate. This argument is supported by reports such as

‘The government came with Antonovs, and targeted everything that moved. They made no distinction
between the civilians and rebel groups. If it moved, it was bombed. It is the same thing, whether there
are rebel groups (present) or not : : :. The government bombs from the sky and the Janjaweed sweeps
through and burns everything and loots the animals and spoils everything that they cannot take’

(transcript from an interview taken by the Darfurian Voices team; interview code 03072009
118 cf2009008).

One can further argue that attacks were indiscriminate within village on the basis that the
violence that was promoted by the government was mainly used to drive people out rather than
to target individuals. Within village, the bombing was crude and the attackers had almost no
information about whom they would target, with one major exception: whereas both men and
women were often injured or killed, women were targeted for widespread sexual assault and
rape by the Janjaweed.

With this in mind, an investigator might claim that village and gender are sufficient for control
of confounding and estimate the linear model

PeaceIndex= τ̂ res DirectHarm+ β̂f ,res Female+Village β̂v,res +Xβ̂res + "̂res .1/

where PeaceIndex is an index measuring individual attitudes towards peace, DirectHarm is a
dummy variable indicating whether an individual was reportedly injured or maimed during such
an attack, Female is a fixed effect for being female and Village is a matrix of village fixed effects.
Other pretreatment covariates are included through the matrix X, such as age, whether they were
a farmer, herder, merchant or trader, their household size and whether or not they voted in the
past. The results of this regression show that, on average, exposure to violence (DirectHarm) is
associated with more pro-peace attitudes on PeaceIndex.



Extending Omitted Variable Bias 43

Despite these arguments, not all investigators may agree with the assumption of no unobserved
confounders. Consider, for example, a fellow researcher who argues that, although bombings
were impossible to target finely, perhaps those in the centre of the village were more often
harmed than those on the periphery. And might not those nearer the centre of each village also
have different types of attitude towards peace, on average? This suggests that the author ought
instead to have run the model

PeaceIndex= τ̂ DirectHarm+ β̂f Female+Village β̂v +Xβ̂+ γ̂ Center+ "̂full, .2/

i.e. our earlier estimate τ̂ res would differ from our target quantity τ̂ : but how badly? How
‘strong’ would a confounder like Center need to be to change our research conclusions? A
simple violation of unconfoundedness such as this can be handled in a relatively straightforward
manner by the traditional OVB framework, as we shall see in Section 3.

However, other sceptical researchers may question the claim that violence was conditionally
indiscriminate with more elaborate stories, worrying that unobserved factors such as Wealth
or PoliticalAttitudes remain as confounders, perhaps even acting through non-linear functions
such as an interaction of these two. Additionally, we may also have domain knowledge about the
determinants of the outcome or the treatment assignment that could be used to limit arguments
about potential confounding. For example, considering the nature of the attacks and the special
role that gender played, one may argue that, within village, confounders are not likely to be as
strongly associated with the treatment as is the observed covariate Female.

How strong would these confounders need to be (acting as a group, possibly with non-
linearities) to change our conclusions? And how could we codify and leverage our beliefs about
the relative importance of Female to bound the plausible strength of unobserved confounders?
In Sections 4 and 5, we show how extending the traditional OVB framework provides answers
to such questions.

3. Sensitivity in an omitted variable bias framework

The OVB formula is an important part of the mechanics of linear regression models and describes
how the inclusion of an omitted covariate changes a coefficient estimate of interest. In this
section, we review the traditional OVB approach and illustrate its use as a simple tool for
sensitivity analysis through bivariate contour plots showing how the effect estimate would vary
depending on hypothetical strengths of the confounder. This serves not only as an introduction
to the method, but also to highlight limitations that we shall address in the following sections.

3.1. The traditional omitted variable bias
Suppose that an investigator wishes to run a linear regression model of an outcome Y on a
treatment D, controlling for a set of covariates given by X and Z, as in

Y = τ̂D+Xβ̂+ γ̂Z + "̂full .3/

where Y is an n × 1 vector containing the outcome of interest for each of the n observations
and D is an n×1 treatment variable (which may be continuous or binary); X is an n×p matrix
of observed (pretreatment) covariates including the constant; and Z is a single n×1 unobserved
covariate (we allow a multivariate version of Z in Section 4.5). However, since Z is unobserved,
the investigator is forced instead to estimate a restricted model:

Y = τ̂ resD+Xβ̂res + "̂res .4/
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where τ̂ res and β̂res are the coefficient estimates of the restricted ordinary least squares with only
D and X, omitting Z, and "̂res its corresponding residual.

How does the observed estimate τ̂ res compare with the desired estimate τ̂? Define as b̂ias
the difference between these estimates: b̂ias := τ̂ res − τ̂ , where the circumflex clarifies that this
quantity is a difference between sample estimates, not the difference between the expectation
of a sample estimate and a population value. Using the Frisch–Waugh–Lovell theorem (Frisch
and Waugh, 1933; Lovell, 1963, 2008) to ‘partial out’ the observed covariates X, the classical
OVB solution is

τ̂ res = cov.D⊥X, Y⊥X/

var.D⊥X/

= cov.D⊥X, τ̂D⊥X + γ̂Z⊥X/

var.D⊥X/

= τ̂ + γ̂
cov.D⊥X, Z⊥X/

var.D⊥X/

= τ̂ + γ̂δ̂ .5/

where cov.·/ and var.·/ denote the sample covariance and variance; Y⊥X, D⊥X and Z⊥X are
the variables Y , D and Z after removing the components linearly explained by X and we define
δ̂ := cov.D⊥X, Z⊥X/=var.D⊥X/. We then have

b̂ias= γ̂δ̂: .6/

Although elementary, the OVB formula in equation (6) provides the key intuitions as well as
a formulaic basis for a simple sensitivity analysis, enabling us to assess how the omission of
covariates that we wished to have controlled for could affect our inferences. Note that it holds
whether or not equation (3) has a causal meaning. In applied settings, however, we are typically
interested in cases where the investigator has determined that the full regression, controlling for
both X and the unobserved variable Z, would have identified the causal effect of D on Y ; thus,
hereafter we shall treat Z as an unobserved ‘confounder’ and continue the discussion as if the es-
timate τ̂ , obtained with the inclusion of Z, is the desired target quantity. (We remind readers that
conditions that endow regression estimates with causal meaning are extensively discussed in the
literature: identification assumptions can be articulated in graphical terms, such as postulating a
structural causal model in which {X, Z} satisfy the backdoor criterion for identifying the causal
effect of D on Y (Pearl, 2009), or, equivalently, in counterfactual notation, stating that the treat-
ment assignment D is conditionally ignorable given {X, Z}, i.e. Yd ⊥⊥D|X, Z, where Yd denotes
the potential outcome of Y when D is set to d (see Pearl (2009), Angrist and Pischke (2008)
and Imbens and Rubin (2015)). We further note that the effect of D on Y may be non-linear, in
which case a regression coefficient may be an incomplete summary of the causal effect (Angrist
and Pischke, 2008). Finally, indiscriminate inclusion of covariates can induce or amplify bias
(see Pearl (2011), Ding and Miratrix (2015), Middleton et al. (2016) and Steiner and Kim (2016)
for related discussions). Here we assume that the researcher is interested in the estimates that
one would obtain from running the regression in equation (3), controlling for X and Z.)

3.2. Making sense of the traditional omitted variable bias
One virtue of the OVB formula is its interpretability. The quantity γ̂ describes the difference
in the linear expectation of the outcome, when comparing individuals who differ by one unit
on the confounder, but have the same treatment assignment status as well as the same value
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for all remaining covariates. In broader terms, γ̂ describes how looking at different subgroups
of the unobserved confounder ‘impacts’ our best linear prediction of the outcome. Although a
causal interpretation here is tempting, whether this difference in the distribution of the outcome
within strata of the confounder can be attributed to a direct causal effect of the unobserved
confounder on the outcome depends on structural assumptions. In many scenarios, however,
this is unrealistic—since the researcher’s goal is to estimate the causal effect of D on Y , usually
Z is required only, along with X, to block the back-door paths from D to Y (Pearl, 2009) or,
equivalently, to make the treatment assignment conditionally ignorable. In this case, γ̂ could
reflect not only its causal effect on Y (if it has any) but also other spurious associations that are
not eliminated by standard assumptions. Heuristically, however, referring to γ̂ as the marginal
‘impact’ of the confounder on the outcome is useful, as long as the reader keeps in mind that it
is an associational quantity with causal meaning only under certain circumstances.

By analogy, it would be tempting to think of δ̂ as the estimated marginal impact of the
confounder on the treatment. However, causal interpretation aside, this is incorrect because
it refers instead to the coefficient of the reverse regression, Z = δ̂D + Xψ̂+ "̂Z, and not the
regression of the treatment D on Z, and X, i.e. δ̂ gives the difference in the linear expectation
of the confounder, when comparing individuals with the same values for the covariates, but
differing by one unit on the treatment. This quantity will be familiar to empirical researchers
who have used quasi-experiments in which the treatment is believed to be randomized only
conditionally on certain covariates X. In that case we may then check for ‘balance’ on other
(pretreatment) observables once conditioning is complete. Hence, we can think of δ̂ as the
(conditional) imbalance of the confounder with respect to the treatment—or simply ‘imbalance’.

Thus, a useful mnemonic is that the omitted variable bias can be summarized as the unob-
served confounder’s ‘impact times its imbalance’. Note that the imbalance component is quite
general: whatever the true functional form dictating E[Z|D, X] (or the treatment assignment
mechanism), the only way in which Z’s relationship to D enters the bias is captured by its ‘linear
imbalance’, parameterized by δ̂. In other words, the linear regression of Z on D and X need not
reflect the correct expected value of Z—rather it serves to capture the aspects of the relationship
between Z and D that affects the bias.

3.3. Using the traditional omitted variable bias for sensitivity analysis
If we know the signs of the partial correlations between the confounder with the treatment and
the outcome (the same as the signs of γ̂ and δ̂) we can argue whether our estimate is likely to
be underestimating or overestimating the quantity of interest. Arguments using correlational
direction are common practice in econometrics work (for an example, see Angrist and Pischke
(2017), pages 8–9). Often, though, discussing possible direction of the bias is not possible or not
sufficient, and magnitude must be considered. How strong would the confounder(s) have to be
to change the estimates in such a way to affect the main conclusions of a study?

3.3.1. Sensitivity contour plots
A first approach to investigate the sensitivity of our estimate can be summarized by a two-
dimensional plot of bias contours parameterized by the two terms γ̂ and δ̂. Each pair of hypoth-
esized impact and imbalance parameters corresponds to a certain level of bias (their product)
but, given an initial treatment effect estimate τ̂ res, we can also relabel the bias levels in terms
of the ‘adjusted’ effect estimate, i.e τ̂ = τ̂ res − γ̂δ̂: the estimate from the ordinary least squares
regression that we wish we had run, if we had included a confounder with the hypothesized level
of impact and imbalance.
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In our running example, a specific confounder that we wish we had controlled for is a binary
indicator of whether the respondent lived in the centre or in the periphery of the village. How
strong would this specific confounder have to be for its inclusion to affect our conclusions
substantially? Fig. 1 shows the plot of adjusted estimates for several hypothetical values of
impact and imbalance of the confounder Center.

Hypothetical values for the imbalance of the confounder lie on the horizontal axis. In this
particular case, they indicate how those who were harmed are hypothesized to differ from those
who were not harmed in terms of the proportion of people living in the centre of the village.
Values for the hypothetical effect of the confounder on the outcome lie on the vertical axis,
representing how attitudes towards peace differ on average for people living in the centre versus
those in the periphery of the village, within strata of other covariates. The contour lines of
the plot give the adjusted treatment effect at hypothesized values of the impact and imbalance
parameters. They show the exact estimate that we would have obtained by running the full
regression including a confounder with those hypothetical sensitivity parameters. No other
information is required to know how such a confounder would influence the result. Note that
here, and throughout the paper, we parameterize the bias in a way that it hurts our preferred
hypothesis by reducing the absolute effect size. (Investigators may also argue that accounting
for OVB would increase the effect size. Our tools apply to these cases as well; the arguments
would just work in the opposite direction.)

This plot explicitly reveals the type of prior knowledge that we need to have to be able to
rule out problematic confounders. As an example, imagine that the confounder Center has a
conditional imbalance as high as 0.25—i.e., having controlled for the observed covariates, those
who were physically injured were also 25 percentage points more likely to live in the centre of
the village than those who were not. With such an imbalance, the plot reveals that the effect of
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Fig. 1. Sensitivity contours of the point estimate—traditional OVB
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living in the centre on the outcome (PeaceIndex) would have to be over 0.40 to bring down the
estimated effect of DirectHarm to 0.

Determining whether this is good or bad news remains difficult and requires contextual
knowledge about the process that generated the data. For instance, one could argue that, given
the relatively homogeneous nature of these small villages and that their centres are generally
not markedly different in composition from the peripheries, it is difficult to believe that being
in the centre was associated with a 0.40 higher expected score on PeaceIndex (which varies only
from 0 to 1). Regardless of whether the investigator can make a clear argument that rules out
such confounders, the virtue of sensitivity analysis is that it moves the conversation from one
where the investigator seeks to defend ‘perfect identification’ and the critic points out potential
confounders, to one where details can be given and discussed about the degree of confounding
that would be problematic.

3.3.2. Shortcomings of the traditional omitted variable bias
The traditional OVB has some benefits: as shown, with sound substantive knowledge about the
problem, it is a straightforward exercise. But it also has shortcomings. In the previous example,
Center was a convenient choice of confounder because it is a binary variable, and the units of
measure attached to impact and imbalance are thus easy to understand as changes in propor-
tions. This is not in general so. Imagine contemplating confounders such as PoliticalAttitudes:
in what scale should we measure this? A doubling of that scale would halve the required impact
and double the required imbalance. A possible solution is to standardize the coefficients, but this
does not help if the goal is to assess the sensitivity of the causal parameter in its original scale.

Furthermore, the traditional OVB, be it standardized or not, does not generalize easily to
multiple confounders: how should we assess the effect of confounders PoliticalAttitudes and
Wealth, acting together, perhaps with complex non-linearities? Or, more generally, how should
we consider all the other unnamed confounders acting together? Can we benchmark all these
confounders against Female? Finally, how can we obtain the sensitivity of not only the point
estimate, but also the standard errors, so that we could examine t-values, p-values or confidence
intervals under hypothetical confounders?

4. Omitted variable bias with the partial R2 parameterization

We now consider a reparameterization of the OVB formula in terms of partial R2 values. Our
goal is to replace the sensitivity parameters γ̂ and δ̂ with a pair of parameters that uses an
R2-measure to assess the strength of association between the confounder and the treatment and
between the confounder and the outcome, both assuming that the remaining covariates X have
been accounted for. The partial R2 parameterization is scale free and it further enables us to
construct some useful analyses, including

(a) assessing the sensitivity of an estimate to any number or even all confounders acting
together, possibly non-linearly,

(b) using the same framework to assess the sensitivity of point estimates as well as t-values
and confidence intervals,

(c) assessing the sensitivity to extreme scenarios in which all or a big portion of the unex-
plained variance of the outcome is due to confounding,

(d) applying contextual information about the research design to bound the strength of the
confounders and

(e) presenting these sensitivity results concisely for easy routine reporting, as well as providing
visual tools for finer-grained analysis.



48 C. Cinelli and C. Hazlett

4.1. Reparameterizing the bias in terms of partial R2

Let R2
Z∼D denote the (sample) R2 of regressing Z on D. Recall that for ordinary least squares

the following result holds:

R2
Z∼D =var.Ẑ/=var.Z/=1−var.Z⊥D/=var.Z/= corr.Z, Ẑ/2 = corr.Z, D/2,

where Ẑ are the fitted values given by regressing Z on D. Note that the R2 is symmetric, i.e. it is
invariant to whether we use the ‘forward’ or the ‘reverse’ regression since R2

Z∼D =corr.Z, D/2 =
corr.D, Z/2 =R2

D∼Z. Extending this to the case with covariates X, we denote the partial R2 from
regressing Z on D after controlling for X as R2

Z∼D|X. This has the same useful symmetry, with
R2

Z∼D|X =1−var.Z⊥X,D/=var.Z⊥X/= corr.Z⊥X, D⊥X/2 = corr.D⊥X, Z⊥X/2 =R2
D∼Z|X.

We are now ready to express the bias in terms of partial R2. First, by the Frisch–Waugh–Lovell
theorem,

b̂ias= δ̂γ̂

= cov.D⊥X, Z⊥X/

var.D⊥X/

cov.Y⊥X,D, Z⊥X,D/

var.Z⊥X,D/

= corr.D⊥X, Z⊥X/ sd.Z⊥X/

sd.D⊥X/

corr.Y⊥X,D, Z⊥X,D/sd.Y⊥X,D/

sd.Z⊥X,D/

= corr.Y⊥X,D, Z⊥X,D/corr.D⊥X, Z⊥X/

sd.Z⊥X,D/=sd.Z⊥X/

sd.Y⊥X,D/

sd.D⊥X/
: .7/

Noting that corr.Y⊥X,D, Z⊥X,D/2 = R2
Y∼Z|X,D, that corr.Z⊥X, D⊥X/2 = R2

D∼Z|X and that
var.Z⊥X,D/=var.Z⊥X/=1−R2

Z∼D|X =1−R2
D∼Z|X, we can write equation (7) as

|b̂ias|=
√(

R2
Y∼Z|D,XR2

D∼Z|X
1−R2

D∼Z|X

)
sd.Y⊥X,D/

sd.D⊥X/
: .8/

Equation (8) rewrites the OVB formula in terms that more conveniently rely on partial R2

measures of association rather than raw regression coefficients. Investigators may be interested
in how confounders alter inference as well, so we also examine the standard error. Let df denote
the regression’s degrees of freedom (for the restricted regression actually run). Noting that

se.τ̂ res/= sd.Y⊥X,D/

sd.D⊥X/

√(
1
df

)
, .9/

se.τ̂ /= sd.Y⊥X,D,Z/

sd.D⊥X,Z/

√(
1

df−1

)
, .10/

whose ratio is

se.τ̂ /

se.τ̂ res/
= sd.Y⊥X,D,Z/

sd.Y⊥X,D/

sd.D⊥X/

sd.D⊥X,Z/

√(
df

df−1

)
, .11/

we obtain the expression for the standard error of τ̂ :
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se.τ̂ /= se.τ̂ res/

√(1−R2
Y∼Z|D,X

1−R2
D∼Z|X

df
df−1

)
: .12/

Moreover, with this we can further see the bias as

|b̂ias|= se.τ̂ res/

√(
R2

Y∼Z|D,XR2
D∼Z|X

1−R2
D∼Z|X

df
)

: .13/

4.2. Making sense of the partial R2 parameterization
Equations (12) and (13) form the basis of the sensitivity exercises regarding both the point es-
timate and the standard error, with sensitivity parameters in terms of R2

Y∼Z|D, X and R2
D∼Z|X.

These formulae are computationally convenient—the only data-dependent parts are the stan-
dard error of τ̂ res and the regression’s degrees of freedom, which are already reported by most
regression software. In this section, we provide remarks that help to make sense of these re-
sults, revealing their simplicity in terms of regression anatomy. We also review some partial R2

identities that may prove useful when reasoning about the sensitivity parameters.

4.2.1. Sensitivity of the point estimate
In the partial R2 parameterization, the relative bias |b̂ias=τ̂ res| has a simple form (see the on-line
supplement section A for details):

relative bias=

bias factor︷ ︸︸ ︷
|RY∼Z|D,XfD∼Z|X|

|fY∼D|X|︸ ︷︷ ︸
partial f of D with Y

= BF
|fY∼D|X| : .14/

The numerator of the relative bias contains the partial Cohen’s f of the confounder with the
treatment, amortized by the partial correlation of that confounder with the outcome. (Cohen’s
f 2 can be written as f 2 =R2=.1−R2/, so, for example, f 2

D∼Z|X =R2
D∼Z|X=.1−R2

D∼Z|X/.) Collec-
tively this numerator could be called the bias factor of the confounder: BF=|RY∼Z|D,XfD∼Z|X|,
which is determined entirely by the two sensitivity parameters R2

Y∼Z|D,X and R2
D∼Z|X. To de-

termine the size of the relative bias, this is compared with how much variation of the outcome
is uniquely explained by the treatment assignment, in the form of the partial Cohen’s f of
the treatment with the outcome. Computationally, fY∼D|X can be obtained by dividing the
t-value of the treatment coefficient by the square root of the regression’s degrees of freedom—
fY∼D|X = tτ̂ res=

√
df. This enables us to assess easily the sensitivity to any confounder with a given

pair of partial R2 values; see Table 2 in the on-line supplement section D for an illustration
procedure.

Equation (14) also reveals that, given a particular confounder (which will fix BF), the only
property that is needed to determine the robustness of a regression estimate against that con-
founder is the partial R2 of the treatment with the outcome (via fY∼D|X). This serves to reinforce
the fact that robustness to confounding is an identification problem, impervious to sample size
considerations. Whereas t-values and p-values might be informative with respect to the statisti-
cal uncertainty (in a correctly specified model), robustness to misspecification is determined by
the share of variation of the outcome that the treatment uniquely explains.

A subtle but useful property of the partial R2 parameterization is that it reveals an asymme-
try in the role of the components of the bias factor. In the traditional OVB formulation, the
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bias is simply a product of two terms with the same importance. The new formulation breaks
this symmetry: the effect of the partial R2 of the confounder with the outcome on the bias
factor is bounded at 1. By contrast, the effect of the partial R2 of the confounder with the
treatment on the bias factor is unbounded (via fD∼Z|X). This enables us to consider extreme
scenarios, in which we suppose that the confounder explains all of the left-out variation of the
outcome, and to see what happens as we vary the partial R2 of the confounder with the treatment
(Section 5.3).

4.2.2. Sensitivity of the variance
How the confounder affects the variance has a straightforward interpretation as well. The relative
change in the variance, var.τ̂ /=var.τ̂ res/, can be decomposed into three components:

relative change in variance=
VRF︷ ︸︸ ︷

.1−R2
Y∼Z|D, X/

1

1−R2
D∼Z|X︸ ︷︷ ︸

VIF

change in df︷ ︸︸ ︷
df

df−1

=VRF×VIF× change in df, .15/

i.e. including the confounder in the regression reduces the variance of the coefficient of D by
reducing the residual variance of Y (the variance reduction factor—VRF). In contrast, it raises
the variance of the coefficient via its partial correlation with the treatment (the traditional
variance inflation factor—VIF). Finally, the degrees of freedom must be adjusted to recover
formally the answer that we would obtain from including the omitted variable. The overall
relative change of the variance is simply the product of these three components.

4.2.3. Reasoning about R2
Y∼Z|D,X and R2

D∼Z|X
For simplicity of exposition, throughout the paper we reason in terms of the sensitivity pa-
rameters R2

Y∼Z|D,X and R2
D∼Z|X directly. However, here we recall some identities of the partial

R2 scale that can aid interpretation depending on what can best be reasoned about in a given
applied setting.

First, as noted in Section 4.1, researchers who are accustomed to thinking about or evalu-
ating the strength of (partial) correlations can simply square those values to reason with the
corresponding partial R2s. Next, in some circumstances, researchers might prefer to reason
about the relationship of the unobserved confounder Z and the outcome Y without condi-
tioning on the treatment assignment D. (For instance, since D will usually be a post-treatment
variable with respect to Z, this can make the association of Y and Z conditional on D more
difficult to interpret, especially when we want to attach a causal meaning to the parameter
(Rosenbaum, 1984). As argued in Section 3.2, however, recall that a causal interpretation of
the association of Z with Y requires more assumptions than those usually invoked for the iden-
tification of the causal effect of D on Y .) This can be done by noting that, for a choice of
RY∼Z|X and RD∼Z|X, we can reconstruct RY∼Z|D,X by using the recursive definition of partial
correlations:

RY∼Z|D,X = RY∼Z|X −RY∼D|XRD∼Z|X√
.1−R2

Y∼D|X/
√

.1−R2
D∼Z|X/

: .16/

Therefore, if needed, we can reason directly about sensitivity parameters R2
Y∼Z|X and R2

D∼Z|X.
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Finally, it may be beneficial to reason in terms of how much explanatory power is added by
including confounders. For this, recall that the partial R2s are defined as

R2
Y∼Z|D,X = R2

Y∼D+X+Z −R2
Y∼D+X

1−R2
Y∼D+X

,

R2
D∼Z|X = R2

D∼X+Z −R2
D∼X

1−R2
D∼X

,

.17/

i.e. plausibility judgements about the partial R2 boil down to plausibility judgements about the
total (or added) explanatory power that we would have obtained in the treatment and the outcome
regressions, if the unobserved confounder Z had been included. This may be particularly useful
when contemplating multiple confounders acting in concert (as we shall discuss in Section 4.5),
in which case other parameterizations (such as simple correlations or regression coefficients)
become unwieldy.

4.3. Sensitivity statistics for routine reporting
Detailed sensitivity analyses can be conducted by using the previous results, as we shall show in
the next section. However, widespread adoption of sensitivity analyses would benefit from simple
measures that quickly describe the overall sensitivity of an estimate to unobserved confounding.
These measures serve two main purposes:

(a) they can be routinely reported in standard regression tables, making the discussion of
sensitivity to unobserved confounding more accessible and standardized;

(b) they can be easily computed from quantities found in a regression table, enabling readers
and reviewers to initiate the discussion about unobserved confounders when reading
papers that did not formally assess sensitivity.

4.3.1. The robustness value
The first quantity that we propose is the robustness value RV, which conveniently summarizes the
types of confounders that would problematically change the research conclusions. Consider a
confounder with equal association to the treatment and the outcome, i.e. R2

Y∼Z|X,D =R2
D∼Z|X =

RVq, where RVq describes how strong that association must be to reduce the estimated effect by
100q%. By equation (14) (see the on-line supplement section A),

RVq = 1
2{√

.f 4
q +4f 2

q /−f 2
q } .18/

where fq :=q|fY∼D|X| is the partial Cohen’s f of the treatment with the outcome multiplied by
the proportion of reduction q on the treatment coefficient which would be deemed problematic.
Confounders that explain RVq% both of the treatment and of the outcome are sufficiently strong
to change the point estimate in problematic ways, whereas confounders with neither association
greater than RVq% are not.

The robustness value thus offers an interpretable sensitivity measure that summarizes how
robust the point estimate is to unobserved confounding. A robustness value that is close to 1
means that the treatment effect can handle strong confounders explaining almost all residual
variation of the treatment and the outcome. In contrast, a robustness value that is close to 0
means that even very weak confounders could eliminate the results. Note that the robustness
value can be easily computed from any regression table, recalling that fY∼D|X can be obtained
by simply dividing the treatment coefficient t-value by

√
df.



52 C. Cinelli and C. Hazlett

With minor adjustment, robustness values can also be obtained for t-values, or lower and
upper bounds of confidence intervals. Let |tÅα, df−1| denote the t-value threshold for a t-test with
level of significance α and df−1 degrees of freedom, and define fÅ

α, df−1 :=|tÅα, df−1|=
√

.df −1/.
Now construct an adjusted fq,α, accounting for both the proportion of reduction q of the point
estimate and the boundary below which statistical significance is lost at the level of α:

fq,α :=q|fY∼D|X|−fÅ
α, df−1: .19/

If fq,α < 0, then the robustness value is 0. If fq,α > 0, then a confounder with a partial R2 of

RVq,α = 1
2{√

.f 4
q,α +4f 2

q,α/−f 2
q,α}, .20/

both with the treatment and with the outcome, is sufficiently strong to make the adjusted t-
test not reject the hypothesis H0 : τ = .1 − q/|τ̂ res| at the α-level (or, equivalently, to make the
adjusted 1 −α confidence interval include .1 −q/|τ̂ res|). When RVq, α > 1 − 1=f 2

q then, as with
RVq, we can conclude that no confounder with both associations lower than RVq, α can overturn
the conclusion of such a test. In the rare cases when RVq, α � 1 − f 2

q , setting RVq, α = .f 2
q −

fÅ2
α, df−1/=.1+f 2

q / restores the property that no confounder that is weaker on both associations
would change the conclusion. Since we are considering sample uncertainty, RVq,α is a more
conservative measure than RVq. If we pick |tÅα, df−1|=0 then RVq,α reduces to RVq. Also, for fixed
|tÅα, df−1|, RVq,α converges to RVq when the sample size grows to ∞. See the on-line supplement
section A for details.

4.3.2. The R2
Y∼D|X as an extreme scenario analysis

The second measure that we propose is the proportion of variation in the outcome that is
uniquely explained by the treatment—R2

Y∼D|X. Consider the following question: ‘if an extreme
confounder explained all the residual variance of the outcome, how strongly associated with
the treatment would it need to be to eliminate the estimated effect?’. As it happens, the answer
is precisely R2

Y∼D|X.
Specifically, a confounder explaining all residual variance of the outcome implies that

RY∼Z|D,X = 1. By equation (14), to bring the estimated effect down to 0 (relative bias 1), this
means that |fD∼Z|X| needs to equal |fY∼D|X|, which implies that R2

D∼Z|X = R2
Y∼D|X. Thus,

R2
Y∼D|X is not only the determinant of the robustness of the treatment effect coefficient but

can also be interpreted as the result of an ‘extreme scenario’ sensitivity analysis.

4.4. Bounding the strength of the confounder by using observed covariates
Arguably, the most difficult part of a sensitivity analysis is taking the description of a confounder
that would be problematic from the formal results, and reasoning about whether a confounder
with such strength plausibly exists in one’s study, given its design and the investigator’s con-
textual knowledge. In this section, we introduce a novel bounding approach that can help to
alleviate this difficulty. The rationale for the method is the realization that, although in some
cases an investigator may not be able to make direct plausibility judgements about the strength
of an unobserved confounder Z, she might still have grounds to make judgements about its
relative strength, for instance, claiming that Z cannot possibly account for as much variation
of the treatment assignment as some observed covariate X. How can we formally codify and
leverage these claims regarding relative strength (or importance) of covariates for sensitivity
analysis?

Clearly, there is not a unique way to measure the relative strength of variables (Kruskal and
Majors, 1989). For the task at hand, however, any proposal must meet the minimal criterion of
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solving the correct identification problem—essentially, this means that the chosen measure of
relative strength must be sufficient to identify (or bound) the bias, and a new function (or bound)
in terms of that measure must be derived (Cinelli et al., 2019). Previous work has proposed
informal benchmarking procedures that fail this minimal criterion and can generate misleading
sensitivity analysis results, even if researchers had correct knowledge about the relative strength
of Z (Frank, 2000; Imbens, 2003; Frank et al., 2008; Blackwell, 2013; Dorie et al., 2016; Carnegie
et al., 2016a; Middleton et al., 2016). We elaborate on the pitfalls of this informal approach in
Section 6.2 of the discussion.

Additionally, simply obtaining a formal identification result is not enough for it to be useful in
applied settings—investigators must still be able to reason cogently about whether confounders
are ‘stronger’ than observed covariates by using the chosen measure of relative strength. Since
this depends on context, it is highly desirable to have a variety of measures for those relative
comparisons (allowing researchers to choose those that are best suited for a given analysis) and
that those measures have relevant interpretations (Kruskal and Majors, 1989). An example of
the risks that are entailed by ignoring this requirement can be found in the coefficient of ‘pro-
portional selection on observables’ that was advanced by Oster (2019), which will be discussed
in Section 6.3.

With this in mind, here we offer three main alternatives to bound the strength of the unob-
served confounder, by judging:

(a) how the total R2 of the confounder compares with the total R2 of a group of observed
covariates;

(b) how the partial R2 of the confounder compares with the partial R2 of a group of observed
covariates, having taken into account the explanatory power of remaining observed co-
variates, or

(c) how the partial R2 of the confounder compares with the partial R2 of a group of observed
covariates, having taken into account the explanatory power of remaining observed co-
variates and the treatment assignment.

These are natural measures of relative importance for ordinary least squares and can be in-
terpreted as comparisons of the consequences of dropping a (group of) variable(s) in variance
reduction or prediction error (Kruskal and Majors, 1989).

The choice of bounding procedures that we should use depends on which of these quan-
tities the investigator prefers and can most soundly reason about in their own research. In
our running example, within a given village, one may argue that Female is the most impor-
tant visible characteristic that could be used for exposure to violence, and it probably explains
more of the residual variation in targeting than could any unobserved confounder. For this
reason (as well as simplicity of exposition) in the main text we illustrate the use of the third
type of bound, and we refer readers to the on-line supplement section B for further discus-
sion and derivations of the other two variants. (Another reason that we employ this type
of bound in the main text is that it is most closely related to approaches that are used by
other sensitivity analyses with which we contrast our results. These include the informal bench-
marks of Imbens (2003) as well as to the bounding proposal of Oster (2019), discussed in
Section 6.)

Assume that Z⊥X, or, equivalently, consider only the part of Z that is not linearly explained
by X. Now suppose that the researcher believes she has measured the key determinants of
the outcome and treatment assignment process, in the sense that the omitted variable cannot
explain as much residual variance (or cannot explain a large multiple of the variance) of D or
Y in comparison with an observed covariate Xj. More formally, define kD and kY as
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kD :=
R2

D∼Z|X−j

R2
D∼Xj |X−j

,

kY :=
R2

Y∼Z|X−j ,D

R2
Y∼Xj |X−j ,D

,

.21/

where X−j represents the vector of covariates X excluding Xj, i.e. kD indexes how much variance
of the treatment assignment the confounder explains relative to how much Xj explains (after
controlling for the remaining covariates). To make things concrete, for example, if the researcher
believes that the omission of Xj would result in a larger mean-squared error of the treatment
assignment regression than would the omission of Z, this equals the claim that kD �1. The same
reasoning applies to kY .

Given parameters kD and kY , we can rewrite the strength of the confounders as

R2
D∼Z|X =kDf 2

D∼Xj |X−j,

R2
Y∼Z|D,X �η2f 2

Y∼Xj |X−j ,D,
.22/

where η is a scalar which depends on kY , kD and R2
D∼Xj |X−j (see the on-line supplement section

B for details). These equations enable us to investigate the maximum effect that a confounder
at most ‘k times’ as strong as a particular covariate Xj would have on the coefficient estimate.
These results are also tight, in the sense that we can always find a confounder that makes the
second inequality an equality. Further, certain values for kD and kY may be ruled out by the
data (for instance, if R2

D∼Xj |X−j
=50% then kD must be less than 1).

Our bounding exercises can be extended to any subset of the covariates. For instance, the
researcher can bound the effect of a confounder as strong as all covariates X or any subset
thereof. The method can also be extended to allow different subgroups of covariates to bound
R2

D∼Z|X and R2
Y∼Z|D,X—thus, if a group of covariates X1 is known to be the most important

driver of selection to treatment, and another group of covariates X2 is known to be the most
important determinant of the outcome, the researcher can exploit this fact.

4.5. Sensitivity to multiple confounders
The previous results let us assess the bias that is caused by a single confounder. Fortunately, they
also provide upper bounds in the case of multiple unobserved confounders. (See Hosman et al.
(2010), section 4.1, for an alternative proof.) Allowing Z to be a set (matrix) of confounders and
γ̂ its coefficient vector, the full equation that we wished we had estimated becomes

Y = τ̂D+Xβ̂+Zγ̂+ "̂full: .23/

Now consider the single variable ZÅ =Zγ̂. The bias that is caused by omitting Z is the same as
omitting the linear combination ZÅ, and we can think about the effect of multiple confounders
in terms of this single confounder. Estimating the regression with X and ZÅ instead of X and Z
gives the same results for τ̂ :

Y = τ̂D+Xβ̂+ZÅ + "̂full: .24/

Accordingly, ZÅ has the same partial R2 with the outcome as the full set Z. However, the
partial R2 of ZÅ with the treatment must be less than or equal to the partial R2 of Z with the
treatment—this follows simply because the choice of the linear combination γ̂ is the choice
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that maximizes the R2 with the outcome, and not with the treatment. Hence, the bias that is
caused by a multivariate Z must be less than or equal to the bias that is computed by using
equation (13).

A similar reasoning can be applied to the standard errors. Since the effective partial R2 of the
linear combination ZÅ with the treatment is less than that of Z, simply modifying sensitivity
equation (12) to account for the correct degrees of freedom (df − k instead of df − 1) will give
conservative adjusted standard errors for a multivariate confounder. From a practical point of
view, however, we note that further correction of the degrees of freedom might be an unneces-
sary formality—we are performing a hypothetical exercise, and we can always imagine to have
measured ZÅ.

Finally, note that the set of confounders Z is arbitrary; thus it accommodates non-linear
confounders as well as misspecification of the functional form of the observed covariates X. To
illustrate the point, let Y = τ̂D+ β̂X+ γ̂1Z + γ̂2Z2 + γ̂3ZX+ γ̂4X2 + "̂full, and imagine that the
researcher did not measure Z and did not consider that X could also enter the equation with
a squared term. Now just call Z = .Z1 = Z, Z2 = Z2, Z3 = ZX, Z4 = X2/ and all the previous
arguments follow.

5. Using the partial R2 parameterization for sensitivity analysis

Returning to our running example of violence in Darfur, we illustrate how these tools can be
deployed in an effort to answer the following questions.

(a) How strong would a particular confounder (or group of confounders) have to be to change
our conclusions?

(b) In a worst-case scenario, how vulnerable is our result to many or all unobserved con-
founders acting together, possibly non-linearly?

(c) Are the confounders that would alter our conclusions plausible, or at least how strong
would they have to be relative to observed covariates?

5.1. Proposed minimal reporting: robustness value, R2
Y �DjX and bounds

Table 1 illustrates the type of reporting that we propose should accompany linear regression
models that are used for causal inference with observational data. Along with traditionally
reported statistics, we propose that researchers present

(a) the partial R2 of the treatment with the outcome and
(b) the robustness value RV, both for where the point estimate and the confidence interval

would cross zero, or another meaningful reference value (for convenience, we refer to RVq

or RVq,α with q=1 as simply RV or RVα).

Table 1. Proposed minimal reporting on sensitivity to unobserved confounders†

Treatment Outcome, PeaceIndex:

Estimate Standard error t-value R2
Y∼D|X (%) RV (%) RVα=0:05 (%)

DirectHarm 0.097 0.023 4.18 2.2 13.9 7.6

†df=783; bound (Z as strong as Female), R2
Y∼Z|D,X =12%, R2

D∼Z|X =1%.
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Finally, to aid user judgement, we encourage researchers to provide plausible bounds on the
strength of the confounder. These may be based on bounds employing meaningful covariates
determined by the research context and design (Section 4.4), or in principle may be available
from theory and previous literature.

For our running example of violence in Darfur, Table 1 shows an augmented regression
table, including the robustness value RV of DirectHarm coefficient: 13.9%. This means that
unobserved confounders explaining at least 13.9% of the residual variance of both the treat-
ment and the outcome would explain away the estimated treatment effect. It also means that
any confounder explaining less than 13.9% of the residual variance of both the treatment
and the outcome would not be sufficiently my strong to bring down the estimated effect to
0. For cases where one association is over 13.9% and the other is below, we conduct addi-
tional analyses that are illustrated in the next subsection. Nevertheless, RV still fully charac-
terizes the robustness of the regression coefficient to unobserved confounding—it provides a
quick, meaningful reference point for understanding the minimal strength of bias necessary
to overturn the research conclusions (i.e. any confounder with an equivalent bias factor of
BF=RV=

√
.1−RV/.)

Adjusting for confounding may not bring the estimate to 0, but rather into a range where it
is no longer ‘statistically significant’. Therefore, the robustness value accounting for statistical
significance, RVα=0:05, is also shown in Table 1. For a level of significance of 5%, the robustness
value goes down from 13.9% to 7.6%—i.e. confounders would need to be only about half as
strong to make the estimate not statistically significant. Finally, the partial R2 of the treatment
with the outcome, R2

Y∼D|X, in Table 1 gives a sensitivity analysis for an extreme scenario: if
confounders explained 100% of the residual variance of the outcome, they would need to explain
at least 2.2% of the residual variance of the treatment to bring down the estimated effect to 0.

Confronted with those results, we now need to judge whether confounders with the strengths
that are revealed to be problematic are plausible. If we can claim to have measured the most
important covariates in explaining treatment and outcome variation, it is possible to bound the
strength of the confounder with the tools of Section 4.4 and to judge where it falls relative to
these quantities. The footnote to Table 1 shows the strength of association that a confounder
as strong as Female would have: R2

Y∼Z|D,X = 12% and R2
D∼Z|X = 1%. As the robustness value

is higher than either quantity, Table 1 readily reveals that such a confounder could not fully
eliminate the point estimate. In addition, since the bound for R2

D∼Z|X is less than R2
Y∼D|X =

2:2%, a ‘worst-case confounder’ explaining all of the left-out variance of the outcome and
as strongly associated with the treatment as Female would not eliminate the estimated effect
either.

Domain knowledge about how the treatment was assigned or regarding the main determinants
of the outcome is required to make any such comparisons meaningful. In our running example, a
reasonable argument can be made that gender is one of the most visually apparent characteristics
of an individual during the attacks, and that, within village, gender was potentially the most
important factor to explain targeting due to the high level of sexual violence. Thus, if we can
argue that total confounding as strongly associated with the treatment as Female is implausible,
those bounding results show that it cannot completely account for the observed estimated effect.

These sensitivity exercises are exact when considering a single linear unobserved confounder
and are conservative for multiple unobserved confounders, possibly acting non-linearly—this
includes the explanatory power of all left-out factors, even misspecification of the functional
form of observed covariates. It is worth pointing out that sensitivity to any arbitrary confounder
with a given pair of partial R2 values .R2

Y∼Z|D,X, R2
D∼Z|X/ can also be easily computed with the

information in Table 1; see the example in on-line supplement section D.
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5.2. Sensitivity contour plots with partial R2: estimates and t-values
The next step is to refine the analysis with tools that visually demonstrate how confounders of
different types would affect point estimates and t-values, while showing where bounds on such
confounders would fall under different assumptions on how unobserved confounders compare
with observables. Note that, although we focus on the plots for point estimates and t-values,
p-values can be obtained from the t-values, and the confidence interval end points by adjusting
the estimate with the appropriate multiple of the standard errors.

Perhaps the first plot that investigators would examine would be similar to Fig. 1, but now in
the partial R2 parameterization (Fig. 2(a)). The horizontal axis describes the fraction of the resid-
ual variation in the treatment (partial R2) explained by the confounder; the vertical axis describes
the fraction of the residual variation in the outcome explained by the confounder (as discussed
in Section 4.2, axes could be transformed to show instead the total R2 or the partial correlations
among other options that may aid interpretation). The contours show the adjusted estimate
that would be obtained for an unobserved confounder (in the full model) with the hypothesized
values of the sensitivity parameters (assuming that the direction of the effects hurts our preferred
hypothesis).

Whereas the contour plot that is used in illustrating the traditional OVB approach focused on
a specific binary confounder—Center—the contour plot with the partial R2 parameterization
enables us to assess sensitivity to any confounder, irrespectively of its unit of measure. Addi-
tionally, since the sensitivity equations give an upper bound for the multivariate case, the same
plot can be used to assess the sensitivity to any group of confounders, here including non-linear
terms, such as the example of PoliticalAttitudes and Wealth acting together. If we choose a
contour of interest (such as where the effect equals 0) and find the point with equal values
on the horizontal and vertical axes (i.e. where it crosses a 45◦ line), this correspond to the ro-
bustness value, i.e. RVq is a convenient, interpretable summary of a critical line of the contour
plot.

Further, the bounding exercise results in points on the plot showing the bounds on the partial
R2 of the unobserved confounder if it were k times as strong as the observed covariate Female.
The first point shows the bounds for a confounder (or group of confounders) as strong as Female,
as was also shown in Table 1. A second reference point shows the bounds for confounders twice
as strong as Female, and finally the last point bounds the strength of confounders three times as
strong as Female. The plot reveals that the sign of the point estimate is still relatively robust to
confounding with such strengths, although the magnitude would be reduced to 77%, 55% and
32% of the original estimate.

Moving to inferential concerns, Fig. 2(b) now shows the sensitivity of the t-value of the
treatment effect. As we move along the horizontal axis, not only the adjusted effect reduces,
but we also obtain larger standard errors due to the variance inflation factor of the confounder.
If we take the t-value of 2 as our reference (the usual approximate value for a 95% confidence
interval), the plot reveals that the statistical significance of DirectHarm is robust to a confounder
as strong as, or twice as strong, as Female. However, whereas confounders that are three times as
strong as Female would not erode the point estimate to 0, we cannot guarantee that the estimate
would remain statistically significant at the 5% level.

Altogether, these bounding exercises naturally lead to the questions: are such confounders
plausible? Do we think it possible that confounders might exist that are three times as strong
as Female? If so, what are they? Although we may not have complete confidence in answering
such questions, we have moved the discussion from a qualitative argument about whether any
confounding is possible to a more disciplined, quantitative argument that entices researchers to
think about possible threats to their research design.
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5.3. Sensitivity plots of extreme scenarios
Even with a good understanding of the treatment assignment mechanism, investigators may not
always be equipped to limit the association of the confounder convincingly with the outcome.
In such cases, exploring sensitivity analysis to extreme scenarios is still an option. If we set
R2

Y∼Z|D,X to 1 or some other conservative value, how strongly would such a confounder need
to be associated with the treatment to change our estimate problematically? Although in some
cases this exercise could reveal that confounders that are weakly related to the treatment would
be sufficient to overturn the estimated effect, survival to extreme scenarios may help investigators
to demonstrate the robustness of their results.

Applying this to our running example, results are shown in Fig. 3. The full curve represents
the case where unobserved confounder(s) explain all the left-out residual variance of the outcome.
On the vertical axis we have the adjusted treatment effect, starting from the case with no bias and
going down as the bias increases, reducing the estimate; the horizontal axis shows the partial R2

of the confounder with the treatment. In this extreme scenario, as we have seen, R2
D∼Z|X would

need to be exactly the same as the partial R2 of the treatment with the outcome to bring down
the estimated effect to 0—i.e. it would need to be at least 2.2%: a value that is below the bound
for a confounder once or twice as strong as Female (shown by the tick marks), which in this case
is arguably one of the strongest predictors of the treatment assignment. In most circumstances,
considering the worst-case scenario of R2

Y∼Z|D, X = 1 might be needlessly conservative. Hence,
we propose to plot other extreme scenarios, as shown in Fig. 3, where we consider different
values of the partial R2 of the unobserved confounder with the outcome, including 75% and
50%.

6. Discussion

6.1. Making formal sensitivity analysis standard practice
Given that ruling out unobserved confounders is often difficult or impossible in observational
research, we might expect that sensitivity analyses would be a routine procedure in numerous
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disciplines. Why then are they not commonplace? We surmise that there are three main obstacles,
which we directly address in this paper.

6.1.1. Strong parametric assumptions
First, the assumptions that many methods impose on the nature and distribution of unobserved
confounders as well as on the treatment assignment mechanism may be difficult to sustain
in some cases. For instance, Rosenbaum and Rubin (1983b), Imbens (2003), Carnegie et al.
(2016a) and Dorie et al. (2016) required specifying the distribution of the confounder as well
as modelling the treatment assignment mechanism; in another direction, the methods that were
put forward in Robins (1999), Brumback et al. (2004) and Blackwell (2013) need to specify
directly a confounding function parameterizing the difference in potential outcomes among
treated and control units. Although assessing the sensitivity to some forms of confounding is
an improvement over simply assuming no confounding (and users may be able to make suitable
parameteric assumptions in some circumstances), widespread adoption of sensitivity analysis
would benefit from methods that do not require users to make those restrictions a priori. Our
derivations are rooted in the traditional OVB precisely to avoid those simplifying assumptions.
As we have seen, the partial R2 parameterization allows a flexible framework for assessing the
sensitivity of the point estimate, as well as t-values and confidence intervals, allowing for multiple
(possibly non-linear) confounders, even including misspecification of the functional form of the
observed covariates.

6.1.2. Lack of simple sensitivity measures for routine reporting
A second obstacle to a wider adoption of sensitivity analysis is the lack of general, yet simple
and interpretable sensitivity measures that users can report alongside other regression summary
statistics. Our minimal reporting recommendation for regression tables (see Table 1) aims to fill
this gap for regression models with

(a) the robustness value, which conveniently summarizes the minimal strength of association
that a confounder needs to have to change the research conclusions, and

(b) the R2
Y∼D|X, which works as an extreme scenario sensitivity analysis.

Regarding the robustness value in particular, we now discuss its relation to two other proposals
that have been advocated in the literature: the impact thresholds of Frank (2000) and the E-value
of VanderWeele and Ding (2017).

Frank (2000) proposed characterizing the strength of the unobserved confounder Z with what
he denoted as its impact, defined as the product RY∼Z|XRD∼Z|X (not to confuse with γ̂ of the
impact times imbalance heuristic, as discussed in Section 3.2). This is then used to determine
impact thresholds, which are defined as the minimum impact of the unobserved confounder that
is necessary not to reject the null hypothesis of zero effect. However, as equation (14) reveals,
the determinant of the bias is the bias factor BF = RY∼Z|D,XfD∼Z|X, which does not have a
one-to-one mapping with the confounder’s impact. This can be made clear by rewriting the
relative bias showing the product RY∼Z|XRD∼Z|X explicitly:

relative bias= |
Frank’s impact︷ ︸︸ ︷

RY∼Z|XRD∼Z|X −RY∼D|XR2
D∼Z|X|

|RY∼D|X.1−R2
D∼ZX/| : .25/

Equation (25) reveals that
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(a) an unobserved confounder with zero impact can still cause non-zero (downward) bias,
(b) an unobserved confounder with a non-zero impact can nevertheless induce zero bias (when

impact=RY∼D|XR2
D∼Z|X) and

(c) the two terms that compose the product RY∼Z|XRD∼Z|X do not enter symmetrically in
the bias equation;

hence confounders with the same impact can cause widely different biases. This creates difficulties
when trying to generalize the impact thresholds that were proposed in Frank (2000) to an
arbitrary non-zero null hypothesis of regression coefficients. For instance, let q denote the relative
bias and consider biases that move the effect towards (or through) zero. Solving equation (25)
for impact gives us impact =RY∼D|X{q − .q − 1/R2

D∼Z|X}. Note that, given q and RY∼D|X, the
impact that is necessary to bring about a relative bias of magnitude q still depends on the
sensitivity parameter R2

D∼Z|X—except when q = 1 (for a numerical example, see the on-line
supplement section A.5). Note that this is not a problem for the robustness value, since it acts
as a convenient reference point uniquely characterizing any confounder with a bias factor of
BF=RVq=

√
.1−RVq/.

As to VanderWeele and Ding (2017), they have recently advanced the E-value: a sensitivity
measure suited specifically for the risk ratio. For other effect measures, such as risk differences,
the E-value is an approximation, whereas, if the researcher uses linear regression to obtain an
estimate, the robustness value is exact. Also, whereas the robustness value parameterizes the
association of the confounder with the treatment and the outcome in terms of percentage of vari-
ance explained (the partial R2), the E-value parameterizes these in terms of risk ratios. Whether
one scale is preferable over the other depends on context, and researchers should be aware of
both options. Overall, we believe that the dissemination of measures such as the E-value and the
robustness value is an important step towards the widespread adoption of sensitivity analysis to
unobserved confounding. In current practice, robustness is often informally or implicitly linked
to t-values or p-values, neither of which correctly characterizes how sensitive an estimate is to
unobserved confounding. The extension of the robustness value to non-linear models is worth
exploring in future research.

6.1.3. Difficulty in connecting sensitivity analysis to domain knowledge
Finally, the third and perhaps most fundamental obstacle to the use of sensitivity analysis is
the difficulty in connecting the formal results to the researcher’s substantive understanding
about the object under study. This can be only partially overcome by statistical tools, as it
relies on the nature of the domain knowledge that is used for plausibility judgements. In this
paper we have showed how one can formally bound the strength of an unobserved confounder
with the same strength (or a multiple thereof) as a chosen group of observed covariates, using
three different types of comparison. This enables researchers to exploit knowledge regarding
the relative importance of observed covariates: when researchers can credibly argue to have
measured the most important determinants of the treatment assignment and of the outcome (in
terms of variance explained), this bounding exercise can be a valuable tool. As we discuss next,
previous attempts to make such comparisons have been problematic, either because of informal
benchmarking practices that do not warrant the claims that they purport to make, or by relying
on inappropriate choices of parameterization.

6.2. The risks of informal benchmarking
Although prior work has suggested informal benchmarking procedures using statistics of ob-
served covariates X to help researchers to ‘calibrate’ their intuitions about the strength of the
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unobserved confounder Z (Frank, 2000; Imbens, 2003; Frank and Min, 2007; Hosman et al.,
2010; Dorie et al., 2016; Carnegie et al., 2016a,b; Middleton et al., 2016; Hong et al., 2018),
this practice has undesirable properties and can lead users to erroneous conclusions, even in
the ideal case where they do have the correct knowledge about how Z compares with X. This
happens because the estimates of how the observed covariates are related to the outcome may
be themselves affected by the omission of Z, regardless of whether we assume that Z is indepen-
dent of X. To illustrate this threat concretely, we first consider a simple simulation where there
is no effect of D on Y , Z is orthogonal to X and, more importantly, Z is exactly like X. (We use
structural equations, Y =X+Z + "y, D=X+Z + "d , X= "x and Z = "z where all disturbances
are independent standard normal random variables. See also the on-line supplement section C.)
The results are shown in Fig. 4.

Note that the informal benchmark point is still far from zero, leading the investigator to
conclude incorrectly that a confounder ‘not unlike X’ would not be sufficient to bring down
the estimated effect to 0—when in fact it would. This incorrect conclusion occurs although
the investigator correctly assumes both that the unobserved confounder is ‘no worse’ than X

(in terms of its strength of relationship to the treatment and outcome) and that Z ⊥ X. Fig.
4 also shows the formal bounds that are obtained with the procedures given in Section 4.4.
Note that these would lead the researcher to the correct conclusion: an unobserved confounder
with the same strength as X would be sufficiently powerful to bring down the estimated effect
to 0.

Why exactly does this happen? Consider for a moment the difference between the coefficient
on X in the full equation (3), β̂, and its estimate in the restricted equation (4), β̂res. Using the
same OVB approach of impact times imbalance, we arrive at β̂res − β̂= γ̂ψ̂, where ψ̂ is obtained
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from the regression Z = δ̂D+Xψ̂+ "̂Z. Note that ψ̂ can be non-zero even if X ⊥Z, because D

is a collider (Pearl, 2009), and conditioning on D creates dependence between Z and X. The
reasoning holds whether we are using the regression coefficients themselves or other observed
statistics, such as partial correlations, partial R2 values or t-values. This renders claims of the
type ‘a confounder Z not unlike X could not change the research conclusions’ unreliable when
observed statistics without proper adjustment are used for benchmarking.

We can use the formal bounds that are derived in equation (22) to quantify how misleading
claims using informal benchmarks would be. In the partial R2 parameterization, this amounts
to using as benchmarks kDR2

D∼Xj |X−j and kY R2
Y∼Xj |X−j ,D, instead of the proper bounds

kDf 2
D∼Xj |X−j and η2f 2

Y∼Xj |X−j , D. There are, thus, two discrepancies:

(a) an adjustment of baseline variance to be explained, when converting the partial R2 to
partial Cohen’s f 2 =R2=.1−R2/, which affects both co-ordinates of the benchmark, and

(b) the collider bias due to the association of Xj with D, which affects only the bound on
R2

Y∼Z|D,X via η2 �kY .

The adjustment of baseline variance may affect informal benchmarks based on correlational
(Frank, 2000), partial R2 (Imbens, 2003) and t-value (Hosman et al., 2010) measures. The collider
bias may affect informal benchmarks that condition on D. Benchmarks that do not condition
on D (such as in Frank (2000)) are not affected by collider bias.) Therefore, the stronger the
association of Xj with the treatment, and the larger the multiples that are used for comparisons
(k times as strong), the more misleading informal benchmarks will be. We thus advise against
informal benchmarking procedures, and previous studies relying on these methods may warrant
revisiting, especially those where benchmark points have strong association with the treatment
assignment.

6.3. On the choice of parameterization
The approach of Hosman et al. (2010) is also rooted in the OVB framework, but it suffers from
two main deficiencies. The first is the central role that informal benchmarking plays in their
proposal, which can be seriously misleading as discussed in the previous section. The second
issue is more subtle, but equally important: the choice of parameterization. Hosman et al. (2010)
asked researchers to ‘calibrate intuitions’ about the strength of the confounder with the treatment
by using a t-value. This is a problematic choice because the t-value incorporates information on
both the strength of association and the sample size, the latter being irrelevant for identification
concerns. What constitutes a large t-value for statistical significance does not map directly to
what constitutes a large strength of a confounder, as this mapping varies significantly depending
on sample size. (More precisely, the t-value in the expression of the bias is an artefact of both
multiplying and dividing by the degrees of freedom, as in our equation (12). Although t-values
can be useful for computational purposes (to utilize quantities that are routinely reported in
regression tables), their dependence on sample size makes them inappropriate for contemplating
how strongly related a confounder is to the treatment. Consider a t-value of 200. With 100 degrees
of freedom, the confounder explains virtually all the residual variance of the treatment (a partial
R2 of 0.9975), whereas with 10 million degrees of freedom the confounder explains less than
0.5%. These are clearly confounders with very different strengths, and the partial R2 clarifies
this distinction.)

An alternative bounding argument has also been presented in Oster (2019) which, unlike the
informal benchmarking practices that were previously discussed, provides a formal identification
result. Nevertheless, the procedure proposed asks users to reason about a quantity that is very
difficult to understand. More precisely, Oster (2019) asked researchers to make plausibility
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judgements on two sensitivity parameters: Rmax and δOster. The Rmax-parameter is simply the
maximum explanatory power that one could have with the full outcome regression, i.e. Rmax =
R2

Y∼D+X+Z. As discussed in Section 4.2 (equation (17)) this has a one-to-one relationship with
R2

Y∼Z|X,D:

R2
Y∼Z|X,D = Rmax −R2

Y∼D+X

1−R2
Y∼D+X

: .26/

By contrast the second sensitivity parameter, δOster, is not easily interpretable in substantive
terms. Following Altonji et al. (2005), Oster (2019) defined ‘indices’ W1 := Xβ̂ and W2 := Zγ̂,
where X is a matrix of observed covariates and Z a matrix of unobserved covariates. Critically,
β̂ and γ̂ are chosen such that Y = τ̂D + W1 + W2 + "̂full (Oster (2019) used population values.
Here we use sample values to maintain consistency with the rest of the paper, but this has no
consequence for the argument in question). The δOster-parameter equals cov.W2, D/=var.W2/×
var.W1/=cov.W1, D/ and is intended as a measure of ‘proportional selection’, i.e. how strongly
the unobservables drive treatment assignment, relative to the observables. The problem here is
that constructing indices W1 and W2 based on relationships to the outcome is not innocuous:
δOster captures not only the relative influence of X and Z over the treatment, but also their
association with the outcome. To examine the simple case with only one covariate and one
confounder and assuming X⊥Z, we have

δOster = cov.W2, D/

var.W2/

var.W1/

cov.W1, D/
= cov.γ̂Z, D/

var.γ̂Z/

var.β̂X/

cov.β̂X, D/
= cov.Z, D/

γ̂var.Z/

β̂var.X/

cov.X, D/
= λ̂

γ̂

β̂

θ̂
,

.27/

where λ̂ and θ̂ are the coefficients of the regression D= θ̂X+ λ̂Z+ "̂D. Consequently, claims that
δOster = 1 implies that ‘the unobservable and observables are equally related to the treatment’
(Oster (2019), page 192) can lead researchers astray, as this quantity also depends on associations
with the outcome. To see how, let the variables be standardized to mean 0 and unit variance,
and pick β̂ = θ̂ = p, γ̂ = λ̂= p=2 and τ̂ = 0. In this case, the confounder Z has either half or a
quarter of the explanatory power of X (as measured by standardized coefficients or variance
explained), yet δOster =1.

Although researchers may be able to make arguments about relative explanatory power of
observables and unobservables in the treatment assignment process, the δOster-parameter does
not correspond directly to such claims. Indeed, arguments made by researchers applying Oster
(2019) suggest that they believe they are comparing the explanatory power of observables and
unobservables over treatment assignment in terms such as correlation or variance explained (e.g.
as in Jakiela and Ozier (2018), page 4, ‘Following the approach suggested by Altonji, Elder, and
Taber (2005) and Oster (2017), we estimate that unobservable country-level characteristics would
need to be 1.44 times more correlated with treatment than observed covariates to fully explain
the apparent impact of grammatical gender on the level of female labor force participation;
unobserved factors would need to be 3.23 times more closely linked to treatment to explain the
impact of grammatical gender on the gender gap in labor force participation’). By contrast, the
parameter kD that we introduced in our bounding procedure (Section 4.4) captures precisely
this notion of the relative explanatory power of the unobservable and observable over treatment
assignment, in terms of partial R2 or total R2, depending on the investigator’s preference.

Such parameterization choices are more than notional when they drive a wedge between what
investigators can argue about and the values of the parameters that these arguments imply. It is
thus important that the sensitivity parameters that are used in these exercises be as transparent
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as possible and match investigators’ conception of what they mean. Hence, we employ R2-
based parameters, rather than t-values or quantities relating indices. The resulting sensitivity
parameters not only correspond more directly to what investigators can articulate and reason
about, but also lead to the rich set of sensitivity exercises that we have discussed. Of course,
further improvements may be possible and future research should investigate whether such
flexibility can be achieved with yet more meaningful parameterizations.

The tools that we propose here, like any other, have potential for abuse. We thus end with
important caveats, in particular emphasizing that sensitivity analysis should not be used for
automatic judgement, but as an instrument for disciplined arguments about confounding.

6.4. Sensitivity analysis as principled argument
Sensitivity analyses tell us what we would have to be willing to believe to accept the substantive
claims that were initially made (Rosenbaum, 2005, 2010, 2017). The sensitivity exercises that
were proposed here tell the researcher how strong unobserved confounding would have to be to
change meaningfully the treatment effect estimate beyond some level we are interested in, and
employ observed covariates to argue for bounds on unobserved confounding where possible.
Whether we can rule out the confounders that are shown to be problematic depends on expert
judgement. As a consequence, the research design and identification strategy as well as the story
explaining the quality of the covariates that are used for benchmarking all play vital roles.

For this reason, we do not propose any arbitrary thresholds for deeming sensitivity statistics,
such as the robustness value or the partial R2 of the treatment with the outcome, sufficiently large
to escape confounding concerns. In our view, no meaningful universal thresholds of the sort
are possible to establish. In a poorly controlled regression on observational data, with no clear
understanding of what (unobservables) might influence treatment uptake, it would be difficult
to claim credibly that a robustness value of 15% is ‘good news’, since the investigator does not
have the necessary domain knowledge to rule out the strength of unobserved confounders down
to this level. In contrast, in a quasi-experiment where the researcher knows that the treatment
was assigned in such a way that observed covariates account for almost any possible selection,
a more credible case may be made that the types of confounders that would substantially alter
the research conclusions are unlikely.

Similarly, we strongly warn against blindly employing covariates for bounding the strength of
confounders, without the ability to argue that they are likely to be among the strongest predictors
of the outcome or treatment assignment. A particular moral hazard is that weak covariates can
make the apparent bounds look better. It is thus imperative for readers and reviewers to demand
that researchers properly justify and interpret their sensitivity results, after which such claims
can be properly debated. Sensitivity analysis is best suited as a tool for disciplined quantitative
arguments about confounding, not for obviating scientific discussions by following automatic
procedures.

This transition from a qualitative to a quantitative discussion about unobserved confounding
can often be enlightening. As put by Rosenbaum (2017), page 171, it may ‘provide grounds
for caution that are not rooted in timidity, or grounds for boldness that are not rooted in
arrogance’. A sensitivity analysis raises the bar for the sceptic of a causal estimate—not just
any criticism can invalidate the research conclusions. The hypothesized unobserved confounder
now must meet certain standards of strength; otherwise, it cannot logically account for all the
observed association. Likewise, it also raises the bar for defending a causal interpretation of
an estimate—proponents must articulate how confounders with certain strengths can be ruled
out.
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A final point of concern is the potential misuse of sensitivity analysis in the gate-keeping of
publications. Sensitivity analysis should not be misappropriated as a tool for inhibiting ‘im-
perfectly identified’ research on relevant topics. Studies on important questions using state of
the art research design, which turn out not to be robust to reasonable sources of confounding,
should not be dismissed. On the contrary, with sensitivity analyses, we can conduct imperfect
investigations, while transparently revealing how susceptible our results are to unobserved con-
founders. This gives future researchers a starting point and road map for improving on the
robustness of these answers in their following inquiries.
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