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OVB Review

In scalar notation:

Y = β0L + β1LX + γZ + e

Y = β0S + β1SX + u

β̂1S = Cov[X, Y ]
V[X]

= Cov[X, (β0L + β1LX + γZ + e)]
V[X]

= Cov[X, β0L]
V[X] + Cov[X, β1LX]

V[X] + Cov[X, γZ]
V[X] + Cov[X, e]

V[X]

= 0 + β1L
Cov[X, X]

V[X] + γ
Cov[X, Z]

V[X] + 0

= β1L + γ
Cov[X, Z]

V[X]
= β1L + γδ

In matrix notation:

Y = XβL + Zγ + e

Y = XβS + u

β̂S = (X ′X)−1X ′Y

= (X ′X)−1X ′(XβL + Zγ + e)
= (X ′X)−1X ′XβL + (X ′X)−1X ′Zγ + (X ′X)−1X ′e

= βL + γ(X ′X)−1X ′Z + 0
= βL + γδ

Sensitivity Analysis

The function ovb primarily estimates the average estimated bias in β̂1 when the true DGP is Y = β0L + β1LX + γZ + e but
the estimated model is Y = β0S + β1SX + u (when return is set to "ovb"). Thus, Z is omitted. We can easily verify that
the OVB approximates γ × δ from our equations above.

The function ovb instead returns the data used in the last iteration or simulation conducted when return is set to anything
else (below, to "data"). We can use this toy dataset to get started with sensitivity analysis ala Cinelli and Hazlett (2020)
under known conditions.

#simulation#####################################################################
ovb<-function(obs,sims,b1,gamma,delta,return){

set.seed(1)
b0=0
correlation_matrix=matrix(c(1,delta,

delta,1),
ncol=2,byrow=T)

#mvrnorm() is useful for generating random variables that are correlated
covariates<-data.frame(MASS::mvrnorm(obs,c(0,0),correlation_matrix,

empirical=T))
data<-data.frame(X=covariates[,1],Z=covariates[,2])
results<-list()
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for (j in 1:sims) {
for (i in 1:obs) {

data$Y=b0+b1*data$X+gamma*data$Z+rnorm(sims)
}
results[[j]]<-lm(Y~X,data)$coefficients[2]-b1

}
if(return=="ovb"){

return(mean(unlist(results)))
} else{

return(data)
}

}
#theoretical ovb is \gamma times \delta
ovb(100,100,b1=1,gamma=1,delta=0.75,"ovb")

## [1] 0.7690668

data<-ovb(100,100,b1=1,gamma=1,delta=0.75,"data") #data from last simulation
#note that you can make gamma (or delta) negative, just add "reduce=F" to sensemakr() function below

#sensitivity analysis###########################################################
##partial Rˆ2 of Z##############################################################
library(asbio)

## Warning: package ’asbio’ was built under R version 4.3.3

## Loading required package: tcltk

#partial Rˆ2 of Z on outcome:
partial.R2(lm(Y~X,data), #model without Z

lm(Y~X+Z,data)) #model with Z

## [1] 0.340535

#partial Rˆ2 of Z on treatment (X):
partial.R2(lm(X~1,data), #model without Z (intercept only)

lm(X~Z,data)) #model with Z

## [1] 0.5625

#keep these in mind when looking at the plots below

library(sensemakr)

## Warning: package ’sensemakr’ was built under R version 4.3.3

## See details in:

## Carlos Cinelli and Chad Hazlett (2020). Making Sense of Sensitivity: Extending Omitted Variable Bias. Journal of the Royal Statistical Society, Series B (Statistical Methodology).

#equivalently (from `sensemakr` package)
sensemakr::partial_r2(lm(Y~X+Z,data)) #partial Rˆ2 of Z on outcome

## (Intercept) X Z
## 0.001351596 0.286198278 0.340535034
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sensemakr::partial_r2(lm(X~Z,data)) #partial Rˆ2 of Z on treatment (X)

## (Intercept) Z
## 0.0000 0.5625

##using sensemakr()#############################################################]
sensitivity<-sensemakr(lm(Y~X,data),treatment="X") #model with known OVB

#given what we know about partial Rˆ2 of omitted variable (Z), below plot implies X would go to about one (truth)
plot(sensitivity) #partial Rˆ2 rescaling of \gamma on Y axis and partial Rˆ2 rescaling of \delta on X axis (and plotting what the resulting \beta would be)
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plot(sensitivity,sensitivity.of="t-value") #X would still remain highly statistically different from 0
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Partial R2 of confounder(s) with the treatment
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#again keep in mind our known confounder has a partial Rˆ2 of 0.340535 on the outcome and 0.5625 on the treatment (again, this analysis implies that Z would drive X to be about 1 [truth])
plot(sensitivity,type="extreme")
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summary(sensitivity) #very useful descriptions

## Sensitivity Analysis to Unobserved Confounding
##
## Model Formula: Y ~ X
##
## Null hypothesis: q = 1 and reduce = TRUE
## -- This means we are considering biases that reduce the absolute value of the current estimate.
## -- The null hypothesis deemed problematic is H0:tau = 0
##
## Unadjusted Estimates of ’X’:
## Coef. estimate: 1.6707
## Standard Error: 0.1173
## t-value (H0:tau = 0): 14.2464
##
## Sensitivity Statistics:
## Partial R2 of treatment with outcome: 0.6744
## Robustness Value, q = 1: 0.7374
## Robustness Value, q = 1, alpha = 0.05: 0.6896
##
## Verbal interpretation of sensitivity statistics:
##
## -- Partial R2 of the treatment with the outcome: an extreme confounder (orthogonal to the covariates) that explains 100% of the residual variance of the outcome, would need to explain at least 67.44% of the residual variance of the treatment to fully account for the observed estimated effect.
##
## -- Robustness Value, q = 1: unobserved confounders (orthogonal to the covariates) that explain more than 73.74% of the residual variance of both the treatment and the outcome are strong enough to bring the point estimate to 0 (a bias of 100% of the original estimate). Conversely, unobserved confounders that do not explain more than 73.74% of the residual variance of both the treatment and the outcome are not strong enough to bring the point estimate to 0.
##
## -- Robustness Value, q = 1, alpha = 0.05: unobserved confounders (orthogonal to the covariates) that explain more than 68.96% of the residual variance of both the treatment and the outcome are strong enough to bring the estimate to a range where it is no longer ’statistically different’ from 0 (a bias of 100% of the original estimate), at the significance level of alpha = 0.05. Conversely, unobserved confounders that do not explain more than 68.96% of the residual variance of both the treatment and the outcome are not strong enough to bring the estimate to a range where it is no longer ’statistically different’ from 0, at the significance level of alpha = 0.05.

##senemakr() with benchmark#####################################################
#what if there was a third confounder, benchmarked to Z?
sensitivity2<-sensemakr(lm(Y~X+Z,data),treatment="X",benchmark_covariates="Z",kd=0.25) #had to set kd to be lower than 1 (cuz Z is so strong, point would be off the graph)
#feel free to vary the variance of Y

#a third OV that was a quarter the "strength" of Z would have a partial Rˆ2 of about 0.35 with the treatment and 0.6 with the outcome
#thus, a third OV that was about a third of the strength of Z would drive X to 0
plot(sensitivity2)
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Partial R2 of confounder(s) with the treatment
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#even easier to make X statistically indistinguishable from 0
plot(sensitivity2,sensitivity.of="t-value")
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summary(lm(Y~X+Z,data))

##
## Call:
## lm(formula = Y ~ X + Z, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.2835 -0.7095 0.0185 0.8655 2.2552
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.03451 0.09524 -0.362 0.718
## X 0.90252 0.14472 6.236 1.17e-08 ***
## Z 1.02422 0.14472 7.077 2.31e-10 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.9524 on 97 degrees of freedom
## Multiple R-squared: 0.7853, Adjusted R-squared: 0.7808
## F-statistic: 177.4 on 2 and 97 DF, p-value: < 2.2e-16

Applied Example Using Martin et al. (2024)

The authors are interested in explaining variation in “incumbency rates” across the top 70 or so most populous democracies
(see Martin, McClean, and Strom 2024).

#data###########################################################################
#url from our public DropBox (note, have to set dl=1 instead of dl=0 at the end)
url<-"https://www.dropbox.com/scl/fi/tofgmxv4neuu0qweewkuv/martin_etal_data.csv?rlkey=roy6wsju5jqxdqzpyh34agzsk&st=tfwovxpt&dl=1"
martin<-read.csv("https://www.dropbox.com/scl/fi/tofgmxv4neuu0qweewkuv/martin_etal_data.csv?rlkey=roy6wsju5jqxdqzpyh34agzsk&st=v8m5fpyr&dl=1")

#main analysis and figure#######################################################
#their basic OLS model
model<-lm(IncumbencyRate~LegOrg+Corruption+LegOrg*Corruption,martin)

#plotting the interaction term
library(interplot); library(tidyverse)

## Loading required package: ggplot2

## Warning: package ’ggplot2’ was built under R version 4.3.3

## Loading required package: abind

## Loading required package: arm

## Loading required package: MASS

## Loading required package: Matrix

## Warning: package ’Matrix’ was built under R version 4.3.2

## Loading required package: lme4

## Warning: package ’lme4’ was built under R version 4.3.2
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##
## arm (Version 1.13-1, built: 2022-8-25)

## Working directory is C:/Users/nicho/OneDrive/Documents/Teaching/602_F_24/11_25_OVB_Sensitivity_Analysis_and_FLW

## Warning: package ’lubridate’ was built under R version 4.3.2

## -- Attaching core tidyverse packages ------------------------ tidyverse 2.0.0 --
## v dplyr 1.1.3 v readr 2.1.4
## v forcats 1.0.0 v stringr 1.5.0
## v lubridate 1.9.3 v tibble 3.2.1
## v purrr 1.0.2 v tidyr 1.3.0

## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x tidyr::expand() masks Matrix::expand()
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## x tidyr::pack() masks Matrix::pack()
## x lubridate::pm() masks asbio::pm()
## x dplyr::select() masks MASS::select()
## x tidyr::unpack() masks Matrix::unpack()
## i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

interplot(model,"LegOrg","Corruption",hist=T)+
geom_hline(yintercept=0,linetype="dashed")
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library(interflex)

## Warning: package ’interflex’ was built under R version 4.3.3
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## ## Syntax has changed since v.1.2.1.
##
## ## See http://bit.ly/interflex for more info.
## ## Comments and suggestions -> zyliu2020@uchicago.edu.

plot(interflex("linear","IncumbencyRate","LegOrg","Corruption",data=martin))
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#basic sensitivity analysis#####################################################
sensitivity<-sensemakr(model,"LegOrg","Corruption",kd=0.5)
plot(sensitivity)
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Partial R2 of confounder(s) with the treatment
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plot(sensitivity,sensitivity.of="t-value")
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summary(sensitivity)

## Sensitivity Analysis to Unobserved Confounding
##
## Model Formula: IncumbencyRate ~ LegOrg + Corruption + LegOrg * Corruption
##
## Null hypothesis: q = 1 and reduce = TRUE
## -- This means we are considering biases that reduce the absolute value of the current estimate.
## -- The null hypothesis deemed problematic is H0:tau = 0
##
## Unadjusted Estimates of ’LegOrg’:
## Coef. estimate: 0.53
## Standard Error: 0.1261
## t-value (H0:tau = 0): 4.2024
##
## Sensitivity Statistics:
## Partial R2 of treatment with outcome: 0.0585
## Robustness Value, q = 1: 0.2202
## Robustness Value, q = 1, alpha = 0.05: 0.1239
##
## Verbal interpretation of sensitivity statistics:
##
## -- Partial R2 of the treatment with the outcome: an extreme confounder (orthogonal to the covariates) that explains 100% of the residual variance of the outcome, would need to explain at least 5.85% of the residual variance of the treatment to fully account for the observed estimated effect.
##
## -- Robustness Value, q = 1: unobserved confounders (orthogonal to the covariates) that explain more than 22.02% of the residual variance of both the treatment and the outcome are strong enough to bring the point estimate to 0 (a bias of 100% of the original estimate). Conversely, unobserved confounders that do not explain more than 22.02% of the residual variance of both the treatment and the outcome are not strong enough to bring the point estimate to 0.
##
## -- Robustness Value, q = 1, alpha = 0.05: unobserved confounders (orthogonal to the covariates) that explain more than 12.39% of the residual variance of both the treatment and the outcome are strong enough to bring the estimate to a range where it is no longer ’statistically different’ from 0 (a bias of 100% of the original estimate), at the significance level of alpha = 0.05. Conversely, unobserved confounders that do not explain more than 12.39% of the residual variance of both the treatment and the outcome are not strong enough to bring the estimate to a range where it is no longer ’statistically different’ from 0, at the significance level of alpha = 0.05.
##
## Bounds on omitted variable bias:
##
## --The table below shows the maximum strength of unobserved confounders with association with the treatment and the outcome bounded by a multiple of the observed explanatory power of the chosen benchmark covariate(s).
##
## Bound Label R2dz.x R2yz.dx Treatment Adjusted Estimate Adjusted Se
## 0.5x Corruption 0.7905 0.2326 LegOrg -1.4611 0.2418
## Adjusted T Adjusted Lower CI Adjusted Upper CI
## -6.0424 -1.9371 -0.9852

The authors’ basic model is IncumbencyRateit = β0 + β1LegOrgit + β2Corruptionit + β3LegOrgit × Corruptionit + eit. What
would be their conditional independence assumption (CIA) here, if they were estimating E[τ ] under the potential outcomes
model?

Note that decide to use an instrument because they believe CIA to be violated. What is the instrument? What are the
assumptions necessary for it to be a “valid” instrument? How does this instrument differ from how it was introduced in class?

You should read Lal et al. (2024) and keep in mind that people recommend using a “robust” F -stat to evaluate relevance or
the “First-stage” (which implies a F -stat of at least 23.1) (see Montiel Olea and Pflueger 2013).

FWL Review

Let’s return to our long regression in matrix form: Y = XβL + Zγ + e.

FWL says that βL can be recovered from the bivariate regression Ỹ = X̃βS + u, where X̃ = X − Zγ and Ỹ = Y − Zγ.
In other words, X̃ are the residuals from the bivariate regression X = Zγ + X̃ and Ỹ are the residuals from the bivariate
regression Y = Zγ + Ỹ .

#full or "long" regressions
summary(lm(Y~X[,2]+Z))
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#\tilde{Y} regressed on \tilde{X}
summary(lm(lm(Y~Z)$residuals ~ lm(X[,2]~Z)$residuals))

Note that running the bivariate regression Y = X̃βS + w recovers βL but gives the incorrect standard errors. You need
“partial” out Z from both the covariate X and the outcome Y .

#Y regressed on \tilde{X}
summary(lm(Y~lm(X[,2]~Z)$residuals))

We could also do this using our projection and annihilator matrices, P and M .

#P and M in terms of only Z
P_Z<-Z%*%solve(t(Z)%*%Z)%*%t(Z)
M_Z<-diag(nrow(data))-P_Z

#\beta_L using P_Z and M_Z (see 5.1 slides on FWL/Hansen)
solve(t(X[,2])%*%M_Z%*%X[,2])%*%t(X[,2])%*%M_Z%*%Y

#can also regress \tilde{Y} on \tilde{X} like we did before
Y_tilde=M_Z%*%Y
X_tilde=M_Z%*%X[,2]
summary(lm(Y_tilde~X_tilde))

#equivalent to full or "long" models (absent some rounding error, I think)
summary(lm(Y~X[,2]+Z))

Two examples of table output:

library(stargazer)
stargazer(model)

% Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com % Date
and time: Mon, Nov 25, 2024 - 12:17:58 PM

library(huxtable)

##
## Attaching package: ’huxtable’

## The following object is masked from ’package:dplyr’:
##
## add_rownames

## The following object is masked from ’package:ggplot2’:
##
## theme_grey

huxreg(model)
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Table 1

Dependent variable:
IncumbencyRate

LegOrg 0.530∗∗∗

(0.126)

Corruption −0.290∗∗∗

(0.100)

LegOrg:Corruption −0.009∗∗∗

(0.002)

Constant 55.184∗∗∗

(5.379)

Observations 288
R2 0.478
Adjusted R2 0.473
Residual Std. Error 16.719 (df = 284)
F Statistic 86.696∗∗∗ (df = 3; 284)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(1)

(Intercept) 55.184 ***

(5.379)

LegOrg 0.530 ***

(0.126)

Corruption -0.290 **

(0.100)

LegOrg:Corruption -0.009 ***

(0.002)

N 288

R2 0.478

logLik -1217.812

AIC 2445.625

*** p < 0.001; ** p < 0.01; * p < 0.05.
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