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Interpreting Coefficients

# continuous treatment (X), binary moderator (Z) #HAHHHAHHAHHHHAHHAHHHBHHRHHAHHAHY
set.seed (1)

n=100

data<-data.frame(X=rnorm(n),
#rbinom(observations, number of Bernoulli wvariables, probability)
Z=rbinom(n,1,0.5)) #Z = {0,1}

#Y = 1 + 1*¥X + 2*%7 + 1*X*7 + e
for(i in 1:n){

data$Y[i]<-bO+bil*data$X[i] +b2*data$Z[i]+b3*data$X[i]*data$Z[i]+rnorm(n) [i]
}

par (mfrow=c(1,2))
plot(data$X, data$y)
plot(data$Z, data$y)
model<-1m(Y~X+Z+X*Z, data)

library(interplot)
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data$X data$Z
#interplot (model, "variable being moderated”, "variable doing the moderating")

interplot (model,"X","Z")
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interplot (model,"Z","X")
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library(interflex)
#interflez("estimator"”, data, "outcome", "treatment”, "moderator™)
interflex(estimator="binning",data,"Y","X","Z")



2.0-

>_

~ 15-

(@]

X

° 10- T

2

2 (

Wos

= A

c

k=

I -

g 00 H
-0.5 |

0.00 0.25 0.50 0.75 1.00
Moderator: Z

interflex(estimator="linear",data,"Y","Z","X")
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Moderator: X

# binary treatment (Z), categorical moderator (U) #A#HHHHHHHHHAHHHAHHAHHHHAHHAHHHHY
data$U<-rbinom(n,2,0.5) #U = {poor=0, middle class=1, rich=2}

#Y = 1 + 1*xZ + 2+«U + 1*Z+U + e
for(i in 1:n){

data$Y2[i] <-bO+bil*data$Z[i] +b2*data$U[i]+b3*data$Z[i] *data$U[i] +rnorm(n) [i]
}

par (mfrow=c(1,2))
plot(data$Z, data$y¥2)
plot(data$U, data$¥2)
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data$z

model2<-1m(Y2~Z+U+Z*U, data)

interplot (model2,"Z","U")

data$yY2
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data$u



interplot(model2,"U","Z")
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interflex("binning",data,"Y2","Z","U",nbins=3)
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Moderator: U

# binary treatment (Z), "binned" covariates (G, K) #HHHHHAHBHHHBHHARBHARBHARRHHAH
data$G<-ifelse(data$Xx>0.5,1,0)
data$K<-ifelse(data$X<=0.5,1,0)

#Y = 1 + 1*Z + 2*U + 1*Z*xU + e
for(i in 1:n){
data$Y3[il<-1+1*data$Z[i] +1*data$G[i]+1+data$K[i]+
1xdata$Z[i] *data$G[i]+rnorm(n) [i]

}

X<-matrix(c(rep(1,n),
data$Z,
data$G,

data$K) ,ncol=4)
qr(X) #the intercept, G, and K are perfectly collinear

# option 1: omit one category (here "R’ dropped K)
model3<-1m(Y3~Z+G+K+Z*G,data)

# option 2: drop intercept
model4<-1m(Y3~-1+Z+G+K+Z*G,data)
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Sidenote on the here package

## quick review of here () HHHHBAHHHBRAHHHRAHHHRARHHUURHHBHUAHHHRAAHHRRAABRRRAHERY
library (here)

write.csv(data,file=here("data","data.csv"),row.names=F)

read.csv(here("data","data.csv"))

Asymptotic Normality of B

Let’s start with arbitrarily looking more closely at B—B:

A n n A A
We can see that 3— 3 can be written as (£ > X; X/)7'(1 3 Xje;), which can again be written as QxxQxe-
i=1 i=1

1
Because Qxe = E[Xe] = 0 due to the weak law of large numbers (WLLN), B — B converges in probability
to a degenerate distribution on 0. It could also be noted that this implies that § converges in probability to
B, or is consistent, since we subtracted it out (0 + 5 = ).

However, we can normalize B — [ such that it is not asymptotically degenerate. This is what we did
in our 09_16_MSE_WLLN_CLT lab when we compared non-normalized asymptotic sampling distributions to
normalized ones.

When we normalize 3 — 3, it no longer converges to a spike about 0 but to a normal distribution centered
on 0. Again, this happens due to the relationship between X; and e;:

Vi~ §) = V((X'X) 1 Xe) 1)
- (iiXiX;)‘l (7= ;X) @)

4 N(0,9Q) (3)

4 (% f:XZ-X{)”N(o, Q) (4)
1=1

L QRN N(0,9) (5)

4 N0, Qx5 20%Y) (6)

11



~ n
Here, multiplying 3 — 3 by /n normalizes it. Distributing v/n, we end up with % >~ X,e; in the second
i=1

part of line 2, which line 3 states converges in distribution to a normal with mean 0 and variance . This
is because Xe is mean zero (E[Xe] = 0) with variance E[(Xe)(Xe)'] = Q. The version of the central limit
theorem (CLT) invoked is the (multivariate) Lindeberg-Levy CLT, which states that a sum of mean zero,

normalized random vectors converges to a normal: /n(Y — pu) 4N (0,V) (Hansen 2022, 160). Here, the

“sum of mean zero, normalized random vectors” is ﬁX e and our V is ). The continuous mapping theorem

(CMT) was used going from lines 4 to 5 to say (+ > Xin)_1 2 Q%Y and Slutsky’s theorem was used
i=1
going from lines 5 to 6.

Thus, the asymptotic variance of is V[3] = Q;<g<QQ;<1)<- This might seem (slightly?) more intuitive if you
consider what we learned last week about the finite variance of 3:

V[BIX] = E[((X'X) " X'e) (¢'X(X'X) ) |X]
looks a lot like E[(Xe)(Xe)'] = Q

Indeed, if we multiply V[B | X] by n, we get a consistent expression of the asymptotic variance:

nVBIX] = "(E[<<X'X>-1X’e> (X (XX XD
_ (%(X’X)_l) (%X’(E[ee’lX])X) (%(X'XW)
= Qi (GX'DX) Qi
= Qxx Q%

In conclusion, we can approximate the sampling distribution of our OLS estimator as: 3 | X ~ N(B8,V[3]/n)
(Blackwell).
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