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Interpreting Coefficients

# continuous treatment (X), binary moderator (Z) ###############################
set.seed(1)

n=100

b0=0
b1=1
b2=2
b3=1

data<-data.frame(X=rnorm(n),
#rbinom(observations, number of Bernoulli variables, probability)
Z=rbinom(n,1,0.5)) #Z = {0,1}

#Y = 1 + 1*X + 2*Z + 1*X*Z + e
for(i in 1:n){

data$Y[i]<-b0+b1*data$X[i]+b2*data$Z[i]+b3*data$X[i]*data$Z[i]+rnorm(n)[i]
}

par(mfrow=c(1,2))
plot(data$X, data$Y)
plot(data$Z, data$Y)

model<-lm(Y~X+Z+X*Z, data)

library(interplot)
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#interplot(model, "variable being moderated", "variable doing the moderating")
interplot(model,"X","Z")
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interplot(model,"Z","X")
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library(interflex)
#interflex("estimator", data, "outcome", "treatment", "moderator")
interflex(estimator="binning",data,"Y","X","Z")
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interflex(estimator="linear",data,"Y","Z","X")
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# binary treatment (Z), categorical moderator (U) ##############################
data$U<-rbinom(n,2,0.5) #U = {poor=0, middle class=1, rich=2}

#Y = 1 + 1*Z + 2*U + 1*Z*U + e
for(i in 1:n){

data$Y2[i]<-b0+b1*data$Z[i]+b2*data$U[i]+b3*data$Z[i]*data$U[i]+rnorm(n)[i]
}

par(mfrow=c(1,2))
plot(data$Z, data$Y2)
plot(data$U, data$Y2)
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model2<-lm(Y2~Z+U+Z*U, data)

interplot(model2,"Z","U")
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interplot(model2,"U","Z")
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interflex("binning",data,"Y2","Z","U",nbins=3)
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# binary treatment (Z), "binned" covariates (G, K) #############################
data$G<-ifelse(data$X>0.5,1,0)
data$K<-ifelse(data$X<=0.5,1,0)

#Y = 1 + 1*Z + 2*U + 1*Z*U + e
for(i in 1:n){

data$Y3[i]<-1+1*data$Z[i]+1*data$G[i]+1*data$K[i]+
1*data$Z[i]*data$G[i]+rnorm(n)[i]

}

X<-matrix(c(rep(1,n),
data$Z,
data$G,
data$K),ncol=4)

qr(X) #the intercept, G, and K are perfectly collinear

# option 1: omit one category (here `R` dropped K)
model3<-lm(Y3~Z+G+K+Z*G,data)

# option 2: drop intercept
model4<-lm(Y3~-1+Z+G+K+Z*G,data)
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Sidenote on the here package

## quick review of here() ######################################################
library(here)

write.csv(data,file=here("data","data.csv"),row.names=F)

read.csv(here("data","data.csv"))

Asymptotic Normality of β̂

Let’s start with arbitrarily looking more closely at β̂ − β:

β̂ − β = (X ′X)−1X ′Y − β

= (X ′X)−1X ′(Xβ + e) − β

= (X ′X)−1X ′Xβ + (X ′X)−1X ′e − β

= (X ′X)−1X ′e

= ( 1
n

n∑
i=1

XiX
′
i)−1( 1

n

n∑
i=1

Xiei)

= Q̂−1
XXQ̂Xe

p→ 0 =⇒ β̂
p→ β

We can see that β̂ −β can be written as ( 1
n

n∑
i=1

XiX
′
i)−1( 1

n

n∑
i=1

Xiei), which can again be written as Q̂−1
XXQ̂Xe.

Because Q̂Xe
p→ E[Xe] = 0 due to the weak law of large numbers (WLLN), β̂ − β converges in probability

to a degenerate distribution on 0. It could also be noted that this implies that β̂ converges in probability to
β, or is consistent, since we subtracted it out (0 + β = β).

However, we can normalize β̂ − β such that it is not asymptotically degenerate. This is what we did
in our 09_16_MSE_WLLN_CLT lab when we compared non-normalized asymptotic sampling distributions to
normalized ones.

When we normalize β̂ − β, it no longer converges to a spike about 0 but to a normal distribution centered
on 0. Again, this happens due to the relationship between Xi and ei:

√
n(β̂ − β) =

√
n
(
(X ′X)−1X ′e

)
(1)

=
( 1

n

n∑
i=1

XiX
′
i

)−1 ( 1√
n

n∑
i=1

Xiei

)
︸ ︷︷ ︸ (2)

d→ N(0, Ω) (3)

d→
( 1

n

n∑
i=1

XiX
′
i

)−1
N(0, Ω) (4)

d→ Q−1
XXN(0, Ω) (5)

d→ N(0, Q−1
XXΩQ−1

XX) (6)
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Here, multiplying β̂ − β by
√

n normalizes it. Distributing
√

n, we end up with 1√
n

n∑
i=1

Xiei in the second

part of line 2, which line 3 states converges in distribution to a normal with mean 0 and variance Ω. This
is because Xe is mean zero (E[Xe] = 0) with variance E[(Xe)(Xe)′] = Ω. The version of the central limit
theorem (CLT) invoked is the (multivariate) Lindeberg-Levy CLT, which states that a sum of mean zero,
normalized random vectors converges to a normal:

√
n(Y − µ) d→ N(0, V ) (Hansen 2022, 160). Here, the

“sum of mean zero, normalized random vectors” is 1√
n

Xe and our V is Ω. The continuous mapping theorem

(CMT) was used going from lines 4 to 5 to say
( 1

n

n∑
i=1

XiX
′
i

)−1 p→ Q−1
XX and Slutsky’s theorem was used

going from lines 5 to 6.

Thus, the asymptotic variance of is V[β] = Q−1
XXΩQ−1

XX . This might seem (slightly?) more intuitive if you
consider what we learned last week about the finite variance of β̂:

V[β̂|X] = E
[(

(X ′X)−1 X ′e
)(

e′X︸ ︷︷ ︸(X ′X)−1)|X]
looks a lot like E[(Xe)(Xe)′] = Ω

Indeed, if we multiply V[β̂|X] by n, we get a consistent expression of the asymptotic variance:

nV[β̂|X] = n

(
E
[(

(X ′X)−1X ′e
)(

e′X(X ′X)−1)|X])

=
( 1

n
(X ′X)−1) ( 1

n
X ′(E[ee′|X])X

) ( 1
n

(X ′X)−1)
= Q̂−1

XX

( 1
n

X ′DX
)

Q̂−1
XX

p→ Q−1
XXΩQ−1

XX

In conclusion, we can approximate the sampling distribution of our OLS estimator as: β̂|X ∼ N(β,V[β]/n)
(Blackwell).
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