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 A Robust Test for Weak Instruments

 José Luis Montiel Olea

 Department of Economics, Harvard University, Cambridge, MA 02138 ( montiel@fas.harvard.edu )

 Carolin Pflueger

 Department of Finance, Sauder School of Business, University of British Columbia, Vancouver BC V6T 1Z2,
 Canada ( carolin.pflueger@sauder.ubc.ca )

 We develop a test for weak instruments in linear instrumental variables regression that is robust to
 heteroscedasticity, autocorrelation, and clustering. Our test statistic is a scaled nonrobust first-stage F
 statistic. Instruments are considered weak when the two-stage least squares or the limited information
 maximum likelihood Nagar bias is large relative to a benchmark. We apply our procedures to the estimation
 of the elasticity of intertemporal substitution, where our test cannot reject the null of weak instruments in

 a larger number of countries than the test proposed by Stock and Yogo in 2005. Supplementary materials
 for this article are available online.

 KEY WORDS: Autocorrelation; Clustered; Elasticity of intertemporal substitution; F statistic;
 Heteroscedasticity.

 1. INTRODUCTION

 This article proposes a simple test for weak instruments that
 is robust to heteroscedasticity, serial correlation, and clustering.
 Staiger and Stock (1997) and Stock and Yogo (2005) developed
 widely used tests for weak instruments under the assumption
 of conditionally homoscedastic serially uncorrected model er-
 rors. However, applications with heteroscedasticity, time series
 autocorrelation, and clustered panel data are common. Our pro-
 posed test provides empirical researchers with a new tool to
 assess instrument strength for those applications.

 The practical relevance of heteroscedasticity in linear instru-
 mental variable (IV) regression has been highlighted before by
 Antoine and Lavergne (2012), Chao and Newey (2012), and
 Hausman et al. (2012). We show, more generally, that depar-
 tures from the conditionally homoscedastic serially uncorrected
 framework affect the weak instrument asymptotic distribution
 of both the two-stage least squares (TSLS) and the limited infor-
 mation maximum likelihood (LIML) estimators. Consequently,
 heteroscedasticity, autocorrelation, and/or clustering can further
 bias estimators and distort test sizes when instruments are po-
 tentially weak. At the same time, the first stage may falsely
 indicate that instruments are strong.

 Under strong instruments, both TSLS and LIML are asymp-
 totically unbiased, while such is generally not the case when
 instruments are weak. We follow the standard Nagar (1959)
 methodology to derive a tractable proxy for the asymptotic
 estimator bias that is defined for both TSLS and LIML. Our

 procedure tests the null hypothesis that the Nagar bias is large
 relative to a "worst-case" benchmark. Our benchmark coincides

 with the ordinary least squares (OLS) bias benchmark when the
 model errors are conditionally homoscedastic and serially un-
 corrected, but differs otherwise.

 Our proposed test statistic, which we call the effective F statis-
 tic, is a scaled version of the nonrobust first-stage F statistic. The

 null hypothesis for weak instruments is rejected for large values
 of the effective F. The critical values depend on an estimate
 of the co vari ance matrix of the OLS reduced form regression

 coefficients, and on the covariance matrix of the reduced form

 errors, which can be estimated using standard procedures.
 We consider two different testing procedures: generalized and

 simplified; both are asymptotically valid. Critical values for both
 procedures can be calculated either by Monte Carlo methods or
 by a curve-fitting methodology by Patnaik (1949). The gener-
 alized testing procedure applies to both TSLS and LIML, and
 has increased power, but is computationally more demanding.
 In contrast, the simplified procedure applies only to TSLS. The
 simplified procedure is conservative, because it protects against
 the worst type of heteroscedasticity, serial correlation, and/or
 clustering in the second stage.

 Empirical researchers frequently report the robust F statistic
 as a simple way of adjusting the Staiger and Stock (1997) and
 Stock and Yogo (2005) pretests for heteroscedasticity, serial cor-
 relation, and clustering, and compare them to the homoscedastic
 critical values. To the best of our knowledge, there is no theoret-

 ical or analytical support for this practice, as cautioned in Baum,
 Schaffer, and Stillman (2007). Our proposed procedures adjust
 the critical values. While our proposed test statistic corresponds
 to the robust F statistic in the just identified case, it differs in
 the overidentified case.

 Our baseline implementation tests the null hypothesis that
 the Nagar bias exceeds 10% of a"worst-case" bias with a size
 of 5%. The simplified procedure for TSLS has critical values
 between 11 and 23.1 that depend only on the covariance ma-
 trix of the first-stage reduced form coefficients. Thus, a simple,

 asymptotically valid rule of thumb is available for TSLS that
 rejects when the effective F is greater than 23.1.

 We apply weak instrument pretests to a well-known empirical
 example, the IV estimation of the Elasticity of Intertemporal
 Substitution (EIS; Campbell 2003; Yogo 2004). Our empirical
 results are consistent with Yogo's (2004) finding that the EIS
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 is small and close to zero. However, for several countries in
 our sample, conditionally homoscedastic serially uncorrected
 pretests indicate strong instruments, while our proposed test
 cannot reject the null hypothesis of weak instruments.
 There is a large literature on inference when IVs are weak;

 see Stock, Wright, and Yogo (2002), and Andrews and Stock
 (2006) for overviews. Our article is closest to Staiger and Stock
 (1997) and Stock and Yogo (2005). Zhan (2010) provided an-
 other interesting approach, which, unlike ours, proposes to test
 the null hypothesis of strong instruments. Bun and de Haan
 (2010) pointed out the invalidity of pretests based on the first-
 stage F statistic in two particular examples of nonhomoscedastic
 and serially correlated errors, but do not provide a valid pretest.

 Robust methods for inference about the coefficients of a

 single endogenous regressor when IVs are weak and errors
 are heteroscedastic and/or serially correlated are also available
 (Andrews and Stock 2006; Kleibergen 2007). A pretest for
 weak instruments followed by standard inference procedures
 can be less computationally demanding, and the use of this two-
 stage decision rule is widespread because of its simplicity. We
 therefore view this article as complementary to robust inference
 methods.

 It is well known that pretests can induce uniformity prob-
 lems (Leeb and Poetscher 2005; Guggenberger 20 10a, b). How-
 ever, Stock and Yogo (2005) showed that in the conditionally
 homoscedastic and serially uncorrected case the first-stage F
 statistic can be used to control the Wald test size distortion.

 In this case, uniformity problems are therefore not a first-order
 concern.

 The rest of the article is organized as follows. Section 2 intro-
 duces the model and presents the generalized and simplified test-
 ing procedures. Section 3 derives asymptotic distributions and
 shows that conditional heteroscedasticity and serial correlation
 can effectively weaken instruments in an illustrative example.
 Section 4 derives the expressions for the TSLS and LIML Nagar
 biases and describes the test statistic and critical values. Section

 5 discusses the implementation of the critical values by Monte
 Carlo simulation and Patnaik's (1949) methodology. Section 6
 applies the pretesting procedure to the IV estimation of the EIS.
 Section 7 concludes. All proofs are collected in the Appendix.

 2. MODEL AND SUMMARY OF TESTING
 PROCEDURE

 2.1 Model and Assumptions

 We consider a linear IV model in reduced form with one

 endogenous regressor and K instruments

 y = ZIIß + vi, (1)

 Y = Zn + v2. (2)

 The structural parameter of interest is ß e R, while II e RK de-
 notes the unknown first-stage parameter vector. The sample size

 is S and the econometrician observes the dataset { ys ,YSÌZS }f=1 .
 We denote the observations of the outcome variable, the endoge-
 nous regressor, and the vector of instruments by yS9 Ys , and Zs,
 respectively. The unobserved reduced form errors have realiza-

 tions Vjs, j e {1,2}. We stack the realized variables in matrices
 y € M5, Z e RSxK , and v7- e Rs , j e {1, 2}.
 Our analysis extends straightforwardly to a model with ad-

 ditional exogenous regressors. In the presence of additional ex-
 ogenous regressors, TSLS and LIML estimators are unchanged
 if we replace all variables by their projection errors onto those
 exogenous regressors. TSLS and LIML are also invariant to nor-
 malizing the instruments to be orthonormal. We can therefore
 assume without loss of generality that there are no additional ex-

 ogenous regressors, and that Z'Z /S = . When implementing
 the pretest, an applied researcher needs to normalize the data.
 We model weak instruments by assuming that the IV first-

 stage relation is local to zero, following the modeling strategy
 in Staiger and Stock (1997).
 Assumption Ln. (Local to Zero) II = 11$ = C/VŠ, where

 C is a fixed vector C € M* .

 Additional high-level assumptions allow us to derive asymp-
 totic distributions for IV estimators and F statistics. TSLS and

 LIML estimators and first-stage F statistics depend on the statis-

 tics Tj'vj/yfS, and estimates of the covariance matrices W and
 fì as defined below.

 Assumption HL. (High Level) The following limits hold as
 S - y 00.

 1. ^ ^or some P°sitive definite

 w Vw, W12'
 'w'i2 w 2 y

 2. [Vi , v2]'[vi , Y2I/S ñ for some positive definite

 *"22Y
 '(0'2 OJļ J

 3. There exists a sequence of positive definite estimates
 {W(S)}, measurable with respect to {^, YSì Zs }f= ,, such that

 W (S) -4 W as S 00.

 Assumption HL is satisfied under various primitive conditions
 on the joint distribution of (Z, vi , V2); see supplementary mate-
 rials C.2, for examples. Assumption HL.l is satisfied as long as
 a central limit theorem holds for Z'vy/Vs. Assumption HL.2
 holds under a weak law of large numbers for [vi , v2]'[vi , v2]/S.
 Assumption HL.3 assumes that we can consistently estimate the
 covariance matrix W from the observable variables.

 Assumption HL allows for a general form of W, similarly
 to the models in Müller (2011) and Mikusheva (2010). This
 is our key generalization from the model in Staiger and Stock
 (1997), who required W to have the form Q <S> /at- The Kro-
 necker form arises naturally only in the context of a condi-
 tionally homoscedastic serially uncorrected model. Our gen-
 eralization is therefore relevant for practitioners working with
 heteroscedastic, time series, or panel data, and it is consequential
 for econometric practice.

 2.2 Implementing the Testing Procedure

 2.2.1 Generalized Test. The generalized testing procedure
 can be implemented in four simple steps. When rejecting the
 null, the empirical researcher can conclude that the estimator
 Nagar bias is small relative to the benchmark. Under the null
 hypothesis, the Nagar bias of TSLS or LIML is greater than a
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 fraction r of the benchmark. Critical values for the effective F

 statistic depend on the desired threshold r, the desired level of
 significance a , and estimates for the matrices W, fì. Critical
 values also vary between TSLS and LIML. In our numerical
 results, we focus on r = 10% and a = 5%.

 1 . If there are additional exogenous regressors, replace all vari-
 ables by their projection residuals onto those exogenous re-
 gressors. Normalize instruments to be orthonormal.

 2. Obtain W as the estimate for the asymptotic covariance ma-
 trix of the reduced form OLS coefficients. Standard statis-

 tical packages estimate this matrix (divided by the sample
 size S) under different distributional assumptions. For cross-
 sectionally heteroscedastic applications, use a heteroscedas-
 ticity robust estimate; for time series applications, use a
 heteroscedasticity and autocorrelation consistent (HAC) es-
 timate; and for panel data applications, use a "clustered"
 estimate.

 3. Compute the test statistic, the Effective F Statistic

 1 Y'ZZ'Y

 = Š tr(W2) '

 where tr( ) denotes the trace operator.
 4. Estimate the effective degrees of freedom

 K eff = [tr(W2)]2(l +2x)
 eff = tr(W^W2) + 2jctr(W2)maxeval(W2)'

 where

 je = Be( W, ß)/r for e e {TSLS, LIML}. (5)

 Here max eval(W2) denotes the maximum eigenvalue of the
 lower diagonal K x K block of the matrix W. The function
 Be{ W, fì) is closely related to the supremum of the Nagar
 bias relative to the benchmark; see Theorem 1 .2. The numer-

 ical implementation of Be( W, ÍŽ) is discussed in Remark 5,
 Theorem 1 . A fast numerical MATLAB routine is available

 for the function Be(W, fì).

 The generalized test rejects the null hypothesis of weak in-
 struments when Feff exceeds a critical value that can be ob-

 tained by either of the following procedures:
 (a) Monte Carlo methods, as described in Section 5.
 (b) Patnaik's (1949) curve-fitting methodology; Patnaik

 critical values obtain as the upper a quantile of
 Xp where xl (*^eff) denotes a noncen- Ke ff ZCcff

 trai x2 distribution with K eff degrees of freedom and
 noncentrality parameter x Keff. Table 1 tabulates 5% Pat-
 naik critical values.

 2.2.2 Simplified Test. A simplified conservative version of
 the test is available for TSLS. The simplified procedure follows
 the same steps, but sets x = 1 /r in Step 4. For a given effective
 degrees of freedom A^ff, the simplified 5% critical value can
 be conveniently read off Table 1. For instance, the critical value
 for a threshold r = 1 0% can be found in the column with x =

 10. The simplified test does not require numerical evaluation
 of Be( W, fì), for it uses the bound Z?tsls(W, fì) < 1, proved
 in Theorem 1.3. The matrix W enters only through the lower
 K x K block W2.

 Table 1. Critical values: upper 5% quantile of xjcefrC*^eff)/^eff

 A'eff x = 3.33 x = 5 jc = 10 jc = 20

 1 12.05 15.06 23.11 37.42

 2 9.57 12.17 19.29 32.32

 3 8.53 10.95 17.67 30.13

 4 7.92 10.23 16.72 28.85

 5 7.51 9.75 16.08 27.98

 6 7.21 9.40 15.62 27.35

 7 6.98 9.14 15.26 26.86

 8 6.80 8.92 14.97 26.47

 9 6.65 8.74 14.73 26.15

 10 6.52 8.59 14.53 25.87

 11 6.41 8.47 14.36 25.64

 12 6.32 8.36 14.21 25.44

 13 6.24 8.26 14.08 25.26

 14 6.16 8.17 13.96 25.10

 15 6.10 8.10 13.86 24.96

 16 6.04 8.03 13.77 24.83

 17 5.99 7.96 13.68 24.71

 18 5.94 7.91 13.60 24.60

 19 5.89 7.85 13.53 24.50

 20 5.85 7.80 13.46 24.41

 21 5.81 7.76 13.40 24.33

 22 5.78 7.72 13.35 24.25

 23 5.74 7.68 13.29 24.18

 24 5.71 7.64 13.24 24.11

 25 5.68 7.61 13.20 24.05

 26 5.66 7.57 13.15 23.98

 27 5.63 7.54 13.11 23.93

 28 5.61 7.51 13.07 23.87

 29 5.58 7.49 13.04 23.82

 30 5.56 7.46 13.00 23.77

 NOTE: Critical values computed by Patnaik (1949) method. For generalized and simplified
 testing procedures, estimate Ken as in Equation (4). For a Nagar bias threshold r (e.g.,
 r = 10%|, set x = 1/r for the simplified procedure. For the generalized procedure, set
 x = Be( W, fì)/r; see Step 4 in Section 2.2.1.

 2.2.3 Comparison With Stock and Yogo (2005) Critical
 Values. We compare the generalized and simplified TSLS crit-
 ical values to those proposed by Stock and Yogo (2005) for the
 case when the data are conditionally homoscedastic and serially
 uncorrected. For this comparison, we assume W = Ö ® and
 W and fì known, as in Stock and Yogo (2005). It then follows
 from (3) and (4) that the effective and nonrobust F statistics are

 equal, and that the effective number of degrees of freedom KCff
 equals the number of instruments K.
 Figure 1 shows the 5% TSLS critical value for testing the
 null hypothesis that the asymptotic estimator bias exceeds 10%
 of the benchmark, the 5% critical value for the corresponding
 simplified test, and the Stock and Yogo (2005) 5% critical value
 for testing the null hypothesis that the TSLS bias exceeds 10%
 of the OLS bias. The Stock and Yogo (2005) critical value is de-
 fined when the degree of overidentification is at least two and we
 therefore show critical values for 3 < K < 30. The TSLS criti-

 cal value increases from 8.53 for K = 3 to 12.27 for K = 30. By
 comparison, the Stock and Yogo (2005) critical value increases
 from 9.08 for K = 3 to 1 1.32 for K = 30. The simplified TSLS
 critical value is strictly larger than the TSLS critical value for
 all K shown, illustrating that the simplified test can be strictly
 less powerful than the generalized procedure. The difference
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 Figure 1. TSLS and simplified 5% critical values assuming condi-
 tional homoscedasticity, no serial autocorrelation, and known Ū and
 W = fì 0 IK. Under these assumptions, the effective number of de-
 grees of freedom K eff equals the number of instruments K , and the
 effective F statistic equals the nonrobust first-stage F statistic. The null

 hypothesis is that the estimator Nagar bias exceeds 10% of the bench-
 mark. Critical values are computed using the Patnaik (1949) method-
 ology. For comparison, we show Stock and Yogo (2005) 5% critical
 values of the null hypothesis that the asymptotic TSLS bias exceeds
 10% of the OLS bias. The online version of this figure is in color.

 between the simplified critical value and the TSLS and Stock
 and Yogo (2005) critical values decreases as K becomes large.

 3. ASYMPTOTIC DISTRIBUTIONS AND AN EXAMPLE

 3.1 Illustrative Example

 A simple example illustrates that heteroscedasticity and serial
 correlation impact the entire asymptotic distribution of both
 TSLS and LIML estimators, and can weaken the performance
 of the estimators. In this example, the first-stage F statistic
 rejects the null hypothesis of weak instruments too often, while
 the effective F statistic allows for testing for weak instruments
 with asymptotically correct size.

 For the sake of exposition, assume ß = 0. Also assume that
 the departure from the conditionally homoscedastic serially un-
 corrected framework takes the particularly simple form

 W = a2(ß <g> Ik), (6)

 where a is a scalar parameter and for a = 1 the expression (6)
 reduces to the conditionally homoscedastic case.

 Remark 1. We can generate example (6) with a purely
 conditionally heteroscedastic data-generating process. Let
 {Zs, visi vis} identically and independently distributed (iid).
 Let instruments independent with E[Z*S ] = 0, E [Zļs] = 1,
 E[Z¡s] = 0, E [Z4ks]=a2. Let (t>,„ ü2s) ~ tf2((0, 0)', Si) in-
 dependently of Zs. Let the reduced form errors vìs =

 rifc=i Zfcj, i>2 s = Then E([t>i5, ^2s] ) =
 fìandEfluu, u2j]' ® Z*Z^) = a2Q <g> I*. HL.1.HL.2,
 and (6) follow from the central limit theorem and the weak law

 of large numbers.

 Remark 2. We can alternatively generate (6) with a
 simple serially correlated data-generating process. As-
 sume that instruments and reduced form errors follow

 independent AR(1) processes Z^+i = PzZks + €ks+',k =

 1, . . . , K , and VjS+' - Pv^js ~ł~ j - 1,2. Let €ks and
 r]jS serially uncorrected with mean zero, E(*s€^) = (1 -
 p|) X IK and E [r}ls, Tļ2s]'[r}'s, Vis ] = (1 - ßl) x ß Then
 E[t>is, V2sY = ß and E(Z5Z1) = I^. HL.l, HL.2 fol-
 low from the central limit theorem and the weak law of

 large numbers. Expression (6) holds with a = (1 + pvpz)/{ 1 -
 PzPv)' Serial correlation in both the instruments and the errors
 is required for a ^ 1 . As a numerical example, moderate serial
 correlation of pv = pz = 0.5 gives rise to a - 1.67.

 With Assumptions Ln and HL, the asymptotic distribution of
 the TSLS estimator

 ČTSLS = [Y'Z(Z'Z)- 1 Z' Y]~ 1 Y'Z(Z'Z)- 1 Z' v i (7)

 w, ["/ C Z 'y2/VŠ'' i C Z'v2/VŠ'~]~'
 a>2 'aa)2 acoļ J 'aa>2 aun J

 (8)

 / C | Z'Vļ/VšV z-.ļ/Vš ļ9)
 'aa> 2 aa>2 J aco'

 -lÝ2Ý2Í~lÝ'2Ýu (10)
 (02

 where

 (JO

 ~M(c
 The asymptotic TSLS distribution depends only on the el-

 ements of the noncentral Wishart matrix [ÝvÝ2''lÝvÝ2l
 Hence, the vector of first-stage coefficients C and the parameter
 a enter into the asymptotic distribution in (10) only through the

 noncentrality parameter C'C /a2co', so CC/a2oĄ summarizes
 instrument strength.

 In this example, heteroscedasticity and serial correlation af-
 fect the biases and test size distortion of TSLS and LIML esti-

 mators in the same way as a weaker first-stage relationship. The
 conditionally homoscedastic serially uncorrected case obtains
 for a = 1, so the TSLS estimator is asymptotically distributed
 as if the errors were conditionally homoscedastic serially un-
 corrected, and the first-stage coefficients were reduced by a
 factor of a. We prove an analogous result for LIML in the
 Appendix.

 Consider a null hypothesis for weak instruments of the form

 ( CC/o)'a2K ) < X . In the presence of conditional heteroscedas-
 ticity or serial correlation of the form (6), the first-stage F statis-

 tic is asymptotically distributed as a2 Xk(C Ç / oĄa2) / K . As a
 increases without bound, the noncentrality parameter goes to
 zero and instruments become arbitrarily weak, but the first-
 stage F statistic diverges to infinity almost surely. On the other
 hand, the effective F statistic is asymptotically distributed as a

 x£(C'C /ctĄa2)/K, so we can reject the null hypothesis of weak
 instruments with confidence level a whenever Feff exceeds the

 upper a quantile of x'(x x K)/K.
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 3.2 Asymptotic Distributions

 Definition 1. Denote the projection matrix onto Z by Pz =
 TU I S and the complementary matrix by Mz = Is - Pz-

 1 . The TSLS estimator

 ßjshs - (Y'Pz Y)~ 1 ( Y'Pzy). (11)
 2. The limited information likelihood (LIML) estimator

 Ājml = (Y'ds - ¿l.mlMz)Y)-'(Y'(Is - *Mz)y),

 (12)

 where /climl is the smallest root of the determinantal equation

 |[y, Y]'[y, Y] - *[y, Y]'Mz[y, Y]| = 0. (13)

 3. The nonrobust first-stage F statistic

 F = (.4,
 Kw'

 where (Y-P^(Y7PZY).
 4. The robust first-stage F statistic

 - yzwt'ZY

 - -ris-' (15)
 where W2 is the lower diagonal K x K block of the matrix
 W.

 5. The effective first-stage F statistic

 YPZY Fe fí=-*Ê YPZY (16)
 tr(W2)

 Lemma 1 derives asymptotic distributions for these statistics,
 generalizing Theorem 1 in Staiger and Stock (1997).

 Lemma 1. Write a2 - co2 - 2ßa>'2 + ß2o)', cr12 = co'2 ~

 ßaÄ, oí = col, and E = ( °l °x' ). Under Assumptions Ln
 y o"i2 ^2 /

 and HL, the following limits hold jointly as S - > 00.

 1. ßrsLs - ß ßjsLs = (y 2 y 2>- 1 y 2'(k 1 - ßYi)-

 2. ßuWL - ß ßuML = (YiYï ~ K'ML(ĄTX(Y'2(y' ~
 ßYl) - KLIMl(&>12 - ßü)])),
 where kUml is the smallest root of | [y j - ßy2, Y2Ì '[Vi ~
 ßYi , Yi' -k?>' = 0.

 3. F -i F* = y2'y2/ KaĄ.

 4. Fr -i F ; = YWyi/K-
 5. Fe ff A F*ff = y2>2/tr(W2),

 where

 fe)~M'((cC)'w)- <17>
 Proof. See the Appendix. □

 The limiting distributions are functions of a multivariate nor-
 mal vector whose distribution depends on the parameters (ß, C),
 and on the matrix W. We treat the asymptotic distributions in
 Lemma 1 as a limiting experiment in the sense of Müller (201 1),
 and use it to analyze inference problems regarding ( ß , C).

 4. TESTING THE NULL HYPOTHESIS OF WEAK
 INSTRUMENTS

 We base our null hypothesis of weak instruments on a bias
 criterion. We follow the standard methodology in Nagar (1959),
 and approximate the asymptotic TSLS and LIML distributions
 to obtain the Nagar bias. Under standard asymptotics, the Nagar
 bias for both estimators is zero everywhere in the parameter
 space, but under weak instrument asymptotics, the bias may
 be large in some regions of the parameter space. We consider
 instruments to be weak when the estimator Nagar bias is large
 relative to a benchmark, extending the OLS bias criterion in
 Stock and Yogo (2005).

 4.1 Nagar Approximation

 Theorem 1. (Nagar Approximation) Let W e R2Kx2K pos-
 itive definite. Write C e Rk as C = ||C||Co and let ß2 =
 ||C||2/tr(W2). Define S, = W, - 2^W,2 + ß2W2, S12 =
 W12 - ßW2, S2 = W2, and the benchmark BM(j8, W) =
 Vtr(Si)/tr(S2). We write SK~] for the AT - 1 dimensional unit
 sphere.

 1. For e € {TSLS, LIML}, the Taylor expansion of ß * around
 fi~{ = 0 gives the Nagar (1959) bias

 Ne (ß, C, W, Q) = ß~2ne(ß, Co, W, ft), (18)

 with

 njsLsiß, Co, W,«) = ^y tr(S2) L [i-2T7^tÌ' tr(S12) J (19) tr(S2) L tr(S12) J
 "limlO^, Co, W, Q)

 tr(S12) - tr(Si) - Cq(2SI2 - ^S,)C0

 2. For e e {TSLS, LIML}:

 /K03, Co, W, St)''
 BJW, fì) = sup I

 ßeR,CoeS"-A sup

 (21)

 3. ^TSLs(W,fì) < 1.

 Proof See the Appendix. □

 Remark 3. The Nagar bias is the bias of an approximating
 distribution. It equals the expectation of the first three terms in
 the Taylor series expansion of the asymptotic estimator distri-
 bution under weak instrument asymptotics. It is therefore al-
 ways defined and bounded for both TSLS and LIML. While the
 asymptotic estimator bias may not always exist, our test is still
 performing well. Under the null hypothesis, the Nagar bias can
 be large, but under the alternative hypothesis, the Nagar bias is
 small; see Section 4.2. Under certain conditions, we can also
 prove that the Nagar bias approximates the asymptotic estima-
 tor bias as the concentration parameter ß2 goes to infinity; see
 supplementary materials C.l.

 Remark 4. We interpret the benchmark BM(/3, W) =
 Vtr(Si)/tr(S2) as a "worst-case" bias. An ad hoc approxima-
 tion of E[^*sls] as a ratio of expectations as in Staiger and
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 Stock (1997) helps convey the intuition:

 E[#sls] ^
 tr(S2)[l + ¡X2]

 « - !
 V+ß2] Vtř(ŠI)Vtř(Š7) V tr<s2)

 The first factor is maximized when instruments are completely
 uninformative and 1jl2 = 0, while the second factor is maximized
 when first- and second-stage errors are perfectly correlated (Liu
 and Neudecker 1995).

 Remark 5. In the implementation of our generalized testing
 procedure, we use the function Z?*(W, fì) to bound the Nagar
 bias relative to the benchmark. We provide a fast and accurate
 numerical MATLAB routine for Be{ W, fí). For any given value
 of the structural parameter ß , we compute the supremum over
 Co € SK~l analytically using matrix diagonalization. We then

 compute the limits of supCoe5*-i | ne(ß, Co, W, ß)|/BM(jö, W)
 as ß -> ±oo. Finally, we numerically maximize the function
 supco €5*-' Co, W, fl)|/BM(j8, Q) over ß e [-X, X],
 where X e M+ is chosen sufficiently large.

 4.2 Null Hypothesis

 For a given threshold r e [0, 1] and matrix W e R2Kx2K , we
 define the null and alternative hypotheses for e e {TSLS, LIML}

 H°e : ß2 e ne( W, S) versus H¡ : ¡x 2 £ He( W, ñ), (23)

 where

 7ťe(W, iL) = /i2 e R+ : sup
 ß€R,C0€SK~i

 Under the null hypothesis, the Nagar bias exceeds a fraction
 r of the benchmark for at least some value of the structural

 parameter ß and some direction of the first-stage coefficients
 Co. On the other hand, under the alternative, the Nagar bias is
 at most a fraction r of the benchmark for any values (ß, Co).

 4.3 Testing Procedures

 We base our test on the statistic Feff , which is asymptotically
 distributed as a quadratic form in normal random variables with
 mean 1 + /z2; see Lemma 1. For a survey of this class of distri-
 butions, see Johnson, Kotz, and Balakrishnan (1995, chap. 29).
 Denote by F¿ ļy (a), the upper a quantile of the distribution
 y'2y2/tr(W2), where y2 ~ A/"a:(C, W2) and let

 c(a, W2,x) = sup {F¿"w2(a)lec/tr(W2)<x} (25)
 CeR*

 lU(-) denotes the indicator function over a set A. We base
 the generalized test on the observation that He( W, fì) =
 [0, Be( W, fì)/r). The generalized procedure is applicable to
 both TSLS and LIML, and it rejects the null hypothesis H °
 whenever

 řeff > c(a, W2, Be( W, S)/r). (26)

 Lemma 2. Under Assumptions Ln and HL, the generalized
 procedure is pointwise asymptotically valid, that is

 sup lim P(Feff > c(a , W2, Be{ W, ß)/r)i < a.

 Furthermore, provided that B{ W, fì) is bounded in probability

 lim^^^lims^ooF (Feff > c(a, W2, Be(Yï, Q)/r) = 1. (28)

 Proof. See the Appendix. □

 The inequality in Theorem 1.3 implies a simplified asymp-
 totically valid test for TSLS, which rejects the null hypothesis
 He( W, fì) whenever

 Feff >c(c*,W2, 1/r). (29)

 With c(a , W2, 1/r) > c(a, W2, ^tsls(W, fì)/r), the simpli-
 fied procedure is asymptotically valid and weakly less powerful
 than the generalized procedure. The simplified test is conser-
 vative, in the sense that under the alternative hypothesis, the
 TSLS Nagar bias is lower than the threshold for any degree of
 dependence in the second stage.

 5. COMPUTATION OF CRITICAL VALUES

 We provide two simple methods to compute the critical value
 c(a, W2,jc). Our first method generates Monte Carlo critical
 values cm(a, W2,jc). We obtain estimates of ^c,vv2(o0 as the
 sample upper a point from a large number of draws from the
 distribution of y2y2/ tr(W2), and then maximize over a large set
 of C, such that CC/tr(W2) < x.

 The second procedure is based on a curve-fitting methodology
 first suggested by Patnaik (1949). Patnaik (1949) and Imhof
 (1961) approximated the critical values of a weighted sum of
 independent noncentral chi-squared distributions by a central
 X2 with the same first and second moments. We analogously
 approximate the distribution Fq,w2 by a noncentral x2 with
 the same first and second moments. Our approximation errors
 are therefore bounded by the original Patnaik errors through a
 triangle inequality. We use

 <30>

 where K eff is possibly fractional with

 Ken = [tr(W2)]2 . l+2ß
 tr(W2) . + 2C'W2C

 There is a large literature that approximates distributions by
 choosing a family of distributions and selecting the member
 that fits best, often by matching lower order moments of the
 original distribution (Satterthwaite 1946; Pearson 1959; Theil
 and Nagar 1961; Grubbs 1964; Henshaw 1966; Conerly and
 Mansfield 1988; Liu, Tang, and Zhang 2009). The noncentral
 chi-squared distribution is a natural choice, because it is exact
 in the homoscedastic case.

 While it is hard to assess the accuracy of these curve-fitting
 approximations analytically, they are often simple and numer-
 ically highly accurate (Rothenberg 1984). We demonstrate the
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 degree of accuracy of their approximations using numerical ex-
 amples. In the supplementary materials B.l, we verify that the
 approximation (30) is numerically as accurate as the original
 central Patnaik distribution for the quadratic forms considered
 in Imhof (1961); approximation errors are at most 0.7% points
 in the important upper 15% tail of the distributions.

 Numerical results, such as in Table 1, clearly indicate that
 upper a quantiles of (30) are decreasing in Ke ff. Moreover, the
 upper a quantile in (30) is nondecreasing in the noncentrality
 parameter ¡i2 (Ghosh 1973). Taking the supremum over C with
 CrC/tr(W2) < X suggests the Patnaik critical value.

 Definition 2. (Patnaik Critical Value) Define the Patnaik
 critical value as

 <32>

 with the effective number of degrees of freedom

 K eff s tr(W2)2(l +2x)
 eff s tr (W2) + 2tr(W2) max eval(W2)x

 We numerically analyze the sizes of Monte Carlo and Pat-
 naik critical values for benchmark parameter values a = 5%
 and X = 10, and find that size distortions are small for
 both methodologies. Monte Carlo critical values are com-
 puted with 40,000 draws from y'2y 2/tr(W2), and we replace
 the infinite set of vectors C s.t. C/C/tr(W2) < x by a fi-
 nite set of size 500. We use code for Fc,w2C*) available
 from Ruud (2000) (Imhof 1961; Koerts and Abrahamse 1969;
 Farebrother 1990; Ruud 2000). For 400 matrices W2 from a
 diffuse prior with K e {1, 2, 3, 4, 5}, our numerical values for
 maxcc/trw2<jc frc,w2(cm ) range between 4.77% and 5.26%, and
 our numerical values for maxcc/trw2<jt Fc,w2(cp) range be-
 tween 5.00% and 5.02%. For further details and MATLAB

 routines, see supplementary materials B.2-B.5.
 Our generalized and simplified critical values differ from

 those proposed by Stock and Yogo (2005) for the TSLS bias,
 even when first- and second-stage errors are perfectly condition-

 ally homoscedastic and serially uncorrelated. In this case, the
 effective F statistic coincides with the Stock and Yogo (2005)
 test statistic. We obtain different critical values because, unlike

 them, we use an approximation to evaluate the weak instrument
 TSLS bias. Moreover, estimating W and fì also generates differ-
 ences in critical values. The difference between our generalized
 TSLS critical values and analogous Stock and Yogo (2005) criti-
 cal values becomes small as the number of instruments becomes

 large.
 In the supplementary materials B.6, we tabulate Stock and

 Yogo (2005) 5% critical values for testing the null hypothesis
 that the TSLS bias exceeds 10% of the OLS bias and our gen-
 eralized and simplified critical values with a threshold of 10%
 and size 5%, assuming conditional homoscedasticity and no se-
 rial correlation. TSLS critical values are smaller than Stock and

 Yogo (2005) critical values for K =3,4, but larger than Stock
 and Yogo (2005) critical values for AT >5. The difference be-
 tween the TSLS and Stock and Yogo (2005) critical values
 is always less than 1 . The LIML critical values decline more
 rapidly with the number of instruments than either the TSLS or
 simplified critical values. The simplified critical values exceed

 the generalized TSLS critical values, because they use a bound
 that applies for any form of the matrix W.

 6. EMPIRICAL APPLICATION: ESTIMATING THE
 ELASTICITY OF INTERTEMPORAL SUBSTITUTION

 We now apply our pretesting procedure to an empirical ex-
 ample, and show that allowing for heteroscedasticity and time
 series correlation can affect pretesting conclusions.

 The literature has focused on estimating the linearized Euler
 equation in two standard IV frameworks (Hansen and Singleton
 1983; Hall 1988; Campbell and Mankiw 1989; Campbell 2003):

 Ac,+i = v + Ýn+' -h uî+ 1 and E[Z,_im,+i] = 0 (34)

 rt+ 1 =£ + (l/V0Ac,+i +fy+i andE[Z,_i77,+,] =0, (35)

 where ý is the EIS, Act+' is consumption growth at time t + 1,
 rt+ 1 is a real asset return, and v is a constant. The vector of
 instruments is denoted by Z,_i . We follow the preferred choice
 of variables in Yogo (2004), using as rt the real return on the
 short-term interest rate, and as instruments the nominal interest

 rate, inflation, consumption growth, and the log dividend-price
 ratio, all lagged twice. We use quarterly data from Yogo (2004).

 The EIS determines an agent's willingness to substitute con-
 sumption over time. Its magnitude is important for understand-
 ing the dynamics of consumption and asset returns (Epstein and
 Zin 1989, 1991; Campbell 2003). While time-varying volatil-
 ity can introduce additional bias into the estimation of the EIS
 (Bansal and Yaron 2004), Yogo (2004) argued that under cer-
 tain types of conditional heteroscedasticity the EIS can still be
 identified.

 Table 2 compares pretests for weak instruments for 1 1 coun-
 tries. Panel A shows weak instrument pretests with the ex-post
 real interest rate as the endogenous variable, while Panel B
 shows weak instrument pretests with consumption growth as
 the endogenous variable. The nonrobust first-stage F statistic
 in column 1 is shown in bold whenever it exceeds the Stock

 and Yogo (2005) critical value 10.27. This is the 5% critical
 value for testing the null hypothesis that the TSLS bias exceeds
 10% of the OLS bias under the assumption of conditional ho-
 moscedasticity and no serial correlation. As in Yogo (2004),
 this homoscedastic pretest indicates strong instruments in Panel
 A, but cannot reject weak instruments in Panel B for almost all
 countries in the sample.

 The second and third columns report the HAC robust first-
 stage F statistic and the effective F statistic computed with a
 Newey-West kernel and six lags. We show 5% critical values
 for TSLS, LIML, and simplified pretests for the null hypothesis
 that the respective Nagar bias exceeds 10% of the "worst-case"
 benchmark.

 In panel A, we see that allowing for heteroscedasticity and
 serial correlation changes the pretesting results for some coun-
 tries, while for other countries all pretests yield the same con-
 clusion. The effective F statistic can be smaller or larger than the

 regular or robust F statistics. Simplified critical values always
 exceed TSLS critical values. LIML critical values tend to be

 smallest.

 The results in Table 2(A) for the United States are particu-
 larly striking. While the US regular F statistic clearly exceeds
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 Table 2. Estimating the Elasticity of Intertemporal Substitution: Weak Instrument Pretests

 Panel A: Ac,+i = v + Ýri+i + "<+i and E[Z,-|M,+i] = 0

 Country Sample period F Fr Feff csimp cTSls Ajml Ýtsls ^liml

 USA 1947.3-1998.4 15.53 8.60 7.94 18.20 15.49 9.68 0.06 0.03
 AUL 1970.3-1998.4 21.81 27.56 17.52 18.36 16.64 10.25 0.05 0.03
 CAN 1970.3-1999.1 15.37 11.58 12.95 18.95 17.38 11.44 -0.30 -0.34
 FR 1970.3-1998.3 38.43 41.67 40.29 19.51 17.01 12.89 -0.08 -0.08
 GER 1979.1-1998.3 17.66 12.47 11.66 18.24 16.30 10.01 -0.42 -0.44
 ITA 1971.4-1998.1 19.01 25.09 19.44 19.26 17.37 12.98 -0.07 -0.07
 JAP 1970.3-1998.4 8.64 8.32 5.09 21.66 20.24 18.71 -0.04 -0.05
 NTH 1977.3-1998.4 12.05 9.31 10.53 18.89 17.18 11.28 -0.15 -0.14
 SWD 1970.3-1999.2 17.08 28.86 19.82 19.04 15.59 11.65 0.00 0.00

 SWT 1976.2-1998.4 8.55 6.68 7.19 18.49 15.80 10.38 -0.49 -0.50

 UK 1970.3-1999.1 17.04 11.78 7.65 20.18 18.72 14.57 0.17 0.16

 Panel B:r,+| =£ + (1 /f)Ac,+l + r),+i and E[Z,_, /;,+,] =0

 Country Sample period F Fr Feñ cstap cTSls climl ^tsls *liml
 USA 1947.3-1998.4 2.93 3.37 2.58 17.61 13.99 10.23 0.68 34.11

 AUL 1970.3-1998.4 1.79 2.87 2.31 19.89 17.25 15.70 0.50 30.03

 CAN 1970.3-1999.1 3.03 5.99 2.70 18.19 15.89 9.77 -1.04 -2.98

 FR 1970.3-1998.3 0.17 0.39 0.22 19.83 18.08 14.09 -3.12 -12.38

 GER 1979.1-1998.3 0.83 2.48 1.13 18.58 16.98 14.19 -1.05 -2.29

 ITA 1971.4-1998.1 0.73 0.39 0.47 19.05 16.96 11.63 -3.34 -14.81

 JAP 1970.3-1998.4 1.18 2.17 2.00 17.94 13.93 15.58 -0.18 -21.56

 NTH 1977.3-1998.4 0.89 3.62 1.84 19.00 16.13 15.30 -0.53 -6.94

 SWD 1970.3-1999.2 0.48 0.81 0.83 17.24 12.51 9.73 -0.10 -399.86

 SWT 1976.2-1998.4 0.97 2.28 1.56 20.21 18.76 16.47 -1.56 -2.00

 UK 1970.3-1999.1 2.52 3.95 2.55 17.94 15.64 14.50 1.06 6.21

 NOTE: Ac is consumption growth and r is the ex-post real short-term interest rate. We instrument using twice lagged nominal interest rate, inflation, dividend-price ratio, and consumption
 growth. HAC variance-covariance matrix W estimated with OLS and Newey-West kernel with six lags. F statistic in bold when it exceeds the critical value of 10.27. This is the 5%
 critical value for testing the null hypothesis that the TSLS bias exceeds 10% of the OLS bias under the assumption of conditional homoscedasticity and no serial correlation (Stock jind
 Yogo 2005). We show simplified, TSLS, and LIML critical values cs¡mp = cp( 5%, W2, 10), cjsls = cP(5%, W2, 10 x #tsls(W, fì)), and climl = cP(5%, W2, 10 x Z?liml(W, fì)).

 Critical values are in bold when exceeded by Feff. ^tslsi Ýuml, 0/V0tslS' an<^ ( 1/V0liml are TSLS and LIML estimates of the EIS and its inverse.

 the homoscedastic threshold of 10.27, the robust and effective

 F statistics are significantly smaller. The effective F does not
 exceed the simplified, TSLS, or LIML critical values, so we
 cannot reject the null hypothesis of weak instruments under
 heteroscedasticity and serial correlation.
 Panel B shows weak instrument pretests for the IV estimation

 of the inverse of the EIS. For this estimation, the results are
 consistent between homoscedastic and HAC weak instrument

 pretests. We cannot reject that instruments are weak for any of
 the countries in the sample.

 The last two columns in Table 2 show the point estimates
 for Ý and 1/^. For those cases where we can reject weak in-
 struments under heteroscedasticity and serial correlation, the
 corresponding EIS point estimates are close to zero and often
 negative. Additional caution is, however, warranted in this in-
 terpretation, because as the number of countries increases, we
 are more and more likely to reject weak instruments at least
 once.

 Our results confirm Yogo's (2004) finding that the EIS is
 small and close to zero. However, we also note that conditional
 heteroscedasticity and serial correlation may further weaken
 instruments and may affect TSLS and LIML bias in several of
 the country-specific regressions.

 7. CONCLUSION

 Heteroscedasticity, serial correlation, and panel data cluster-
 ing can affect instrument strength. This article develops a robust

 test for weak instruments, which allows empirical researchers
 to test the null hypothesis that the TSLS or LIML Nagar bias is
 large relative to a benchmark.

 The test is based on a scaled version of the regular F statistic.
 Critical values depend on the covariance matrix of the reduced
 form coefficients and errors. Our general test requires compu-
 tational work to evaluate the Nagar bias of TSLS or LIML. A
 simplified conservative version does not require this step, but
 is only available for TSLS. Critical values can then be imple-
 mented as quantiles of a noncentral chi-squared distribution with
 noninteger degrees of freedom.

 Pretests based on the robust (or nonrobust) first-stage F statis-
 tic with Stock and Yogo (2005) critical values are commonly
 applied outside the conditionally homoscedastic serially uncor-
 rected framework. However, to the best of our knowledge, there
 is no analysis supporting this practice. This article offers an alter-
 native: a simple, asymptotically valid test that should be used for
 conditionally heteroscedastic, time series, and clustered panel
 data.
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 APPENDIX

 A.1 Proof of Lemma 1

 First note the preliminary result that under Assumptions Ln
 and HL

 J_ / z'y ' /ćc + z 'v,a/S'
 VŠ'Z'y) 'c + Z'y2/Vš) Ļ }

 4(-).
 1. ßjsLs = (Y'PzY)-'(Y'Pzy) = ( Y'Z(Z'Z)- 1 Z' Y)~ 1 (Y'Z

 (Z'Z)_lZ'y). Since we have assumed that Z'Z/S = I*-,
 the result follows from (A. 2) and the continuous mapping
 theorem.

 2. Write J = [ ® ] and k = S(k - 1 ). Note that J is nonsingu-

 lar and so the roots of |[y, Y]'[y, Y] - *[y, Y]'Mz[y, Y]| =
 0 are the same as of |J'[y, Y]'[y, Y]J - *J'[y, Y]'MZ
 [y, Y]J| = 0. Moreover, [y, Y]'[y, Y] - (1 + k/S)[ y, Y]'

 Mz[y, Y] = [y, Y]'Pz[y, Y] - *[y, Y]'Mz[y, Y]/S 4- [y„
 y zl'ty i » y ~ K ^ uniformly in k over compact sets. The
 solutions of I [y, Y]'[y, Y] - (1 + ic/S)[y, Y]'Mz[y, Y]| =
 0, therefore, converge to those of U'tyj, y 2^ ~
 kJ'ÖJI = 0. With J'fìJ = Ys thus S(Ícuml ~~ 0
 where /climl is as given in Lemma 1.2.

 Then ÍSuml ~ß = [Y'(IS - ^limlMz)Y]-,[Y,(I5 - ¿liml
 Mz)(y - ßY)] = [Y'PzY - 5(W - l)^r'[Y'Pz
 (y - ßY) - S(ícUML - l)YMz(| ^Y)] -»■ [y'2y2 ~ ^liml
 oirl[y2(yi - ßyi) - ^LiML^n]-

 3. Note that = (Y - PZY)'(Y - PZY)/(S -K- 1) =
 (V2 - Pzv2)'(v2 - PzV2)/(5 - K - 1) -*■ oĄ by Assump-
 tions Ln and HL. The result follows from (A. 2) and the
 continuous mapping theorem.

 4. and 5. follow from (A. 2), the continuous mapping theorem,
 and Assumptions Ln and HL.

 A.2 LIML Distribution in Illustrative Example

 We show that in the illustrative example heteroscedasticity
 and serial correlation can effectively make instruments weaker
 for LIML. Assume W = a2 iL (g) I^. Remember that $uml =
 arg min^y - ß K)'Pz(y - ß Y)/(y - ß Y)'(y - ßY). We will
 analyze the weak instrument limit of the LIML objective
 function. Note that, using Assumptions Ln and HL, Z'(y -

 ßY -/3>2.
 Moreover, (y - ßY)'(y - ßY )/S co' - 2ßco'2 + fi2oĄ

 uniformly in ß over compact sets. Hence, ß^mL is distributed
 according to

 . fico2f2y(œ 't' - ß^ifi)
 arg min a

 ß co] - 2ß(i)'2 + ß2(Jt) 2
 Just as for the ßjshs , the vector of first-stage coefficients C and

 the parameter a enter into the asymptotic distribution ß^mL only
 through the noncentrality parameter C 'C/(a2aĄ).

 A.3 Proof of Theorem 1

 A.3.1 Proof of Theorem 1.1. We follow Rothenberg
 (1984) in developing the Nagar (1959) moments for the TSLS

 and LIML estimators. We need to expand ßjSLS and ßt'ML as
 second-order Taylor expansions in /x-1 around ¡jl~x =0.

 We start by developing the Taylor expansion for kliml-
 Write tu = S71/2(y, - ßy2) and zv = S2 1/2(y2 ~ C), so zu
 and zv are standard multivariate normal. Also write X =
 Mtr(S2)1/2S~ l/2C0, where C0 = C/||C||.

 kliml is defined as the smallest root of the determinantal
 equation

 / r Cif <J'2 ~|'
 det ( A - kliml 2 J = 0, (A.3)

 ' Lai2 a2 2 J/
 where

 a I" z'uStzu z'uS',2Sy2(k + zv) ' A a :=

 |_ z;sļ/2sļ/2 (X + zv) (z„ + X)' S2 (zv + X) _ '

 We can rewrite this as a quadratic equation

 { ĶIJMl'2 _ °la' ' + G ' &22 - 2a'2Q'2 ^LIML
 V ļi2 ) _ ß2 det ļji2

 det A

 + 4 det i £ = 0. (A.4) /¿4 4 det i £

 We use the method of undetermined coefficients. Write

 klimlM-2 = Co + Ci/i"1 + c2ß~2 + 0(ß~ 3) (A.5)

 for unknown constants Co, c' , C2- Similarly write

 dW= , ( . _ erudii + cF^a 22 - 2a'20'2 dW= ( _ M2det5:
 = do + d'ļi 1 + d2i¿ 2 + 0(ļi 2) (A. 6)

 _ det A det A
 6 ^ _ f¿4 det E fi 4 det X '

 = e0 + e'ß~] + e2ß~ 2 + 0(/x"3), (A.7)

 where the Taylor series expansions for d and e give
 d0 = <7ļ2tr(S2)/det Z, e0 = 0,e' = 0, and e2 = tr(S2)[z^SiZM -
 (zýS}/2C0)2]/ det E.

 Substituting (A.5), (A. 6), and (A.7) into the quadratic Equa-
 tion (A.4) and equating coefficients gives co(co - ^o) = 0- Since
 we are interested in the smaller solution, we have co = 0. Then

 Co = 0, C| - 0, c2 - e2/d0, and so ku mlM-2 - ^[<S|Z„ -

 (z;S¡/2C0)2]/i-2 + 0(n~3).
 We then expand ß£mL

 ßuML-V ñ* - -I CÓS¡/2Z„tr (S2)1/2 +M 2 1 , / sI/2gl/2 S,
 ßuML-V ñ* - -I tr(S2) +M 2 tr(S2)KS2 , / sI/2gl/2 S,

 -2(C^S|/2Z„)(C^/2Z„) - C20r12) + 0{1JL~'

 Taking the expectation of the first two terms gives the LIML
 Nagar bias as in the theorem.
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 We can similarly derive the Taylor expansion for ßjSLS ac-
 cording to

 .CiSļ^triSi)"2 +ß 2 1 / » g i /2 s 5». . /2 Ptsls-M tr(§2) +ß tr(s2)^S2 g s 5».
 - 2(CqS¡/2z„)(CÓS1/2z1,)) + Oifx'3).

 The Nagar bias is defined as the expected value of the first two
 terms, and hence equals

 Njsisiß, c, W, fi) = -ļ-(trS12 - 2C^S,2Co)m-2.
 tr»2

 A. 3. 2 Proof of Theorems 1.2 and 1.3. We prove Theorem
 1.3 first. We assume that W and fì are positive definite, so S and
 E are also positive definite. S 12 is real valued but not necessarily
 symmetric. Note that

 trS,2 - 2CÓS12C0 = trSf2m - 2C'0S]y2mC0,

 where S*2m = ļ (S 1 2 + S'12) is the symmetric part of S12. Write

 "A., 0 ... 0 "

 A = 0 A.2 ... 0

 0 0 ... 'k

 for the diagonal matrix of eigenvalues of S^m. Assume the
 eigenvalues are ordered, so Ài > X2 > • • • > XK. For any real
 matrix M, we write |M| = VĪVTĪVĪ, so the Schatten 1-norm for
 matrices is defined as ||M|| 1 = tr|M|.

 trS,y2m - 2C^S72mCo < ][> - 2À*
 k= 1

 K- 1

 = ^
 k= 1

 K

 <X>i
 k= 1

 Similarly trSf2m - 2C¿Sf2mC0 > - ||S^m||,. Hence, |trS®^m -
 2Ci,S72mCo| < ||0.5S|2 + 0.5S'12||i < ||SI2|||. The last step fol-
 lows from the triangle inequality and from the fact that the

 eigenvalues of Sj2Si2 and S^S'^ are the same.
 Now tr(Sļ2S2 S12) < tr(Si), see, for example, Theorem 7.14

 in Zhang (2010). Applying the matrix trace Cauchy-Schwarz
 inequality (Liu and Neudecker 1995, Theorem 1):

 IIS12IIÎ = (tr|Sl2|)2

 < trS2tr(|Sl2rSj1|Sl2|)

 = trS2tr(S,2S2 ' S12) -

 Putting this together, we get ||Si2 II 1 < VtřŠTSŠ^, proving
 Theorem 1.3.

 The TSLS part of Theorem 1.2 follows from Theorem 1.3.

 For the LIML part note that £Liml(W, Û) = sup^ guMhiß ),

 where

 (trSi2 (trSi2

 trS|2 - ^ftrSi - minevalMß '

 VtrSi

 where M„ = {(2Sn - ^S,) + ±(2S12 - ^S,)' and

 maxevalW2 „ , A ^
 guMh(ß) - ► - -zTj

 -zTj trW2

 For W and ñ nonsingular #liml is continuous in ß everywhere,
 and hence bounded.

 A.4 Proof of Lemma 2

 Assume that W and fì are nonsingular. We prove that the test
 that rejects if

 Feff > c(a, W2, Be{ W, S)/r) (A. 10)

 is asymptotically valid, that is, its asymptotic size is at most a.

 Claim 1: The function (a) is continuous in {C, W2}.

 Proof: is a continuous random variable with

 nonzero density on R+, and therefore F¿T ļy2(o?) is strictly de-
 creasing and continuous in a everywhere. By Van der Vaart

 (2000, Lemma 21.2), the quantile function F¿ ļy2(a) is contin-
 uous in {C, W2} for any fixed a.

 Claim 2: The function Be( W, it) is lower semicontinuous.

 Proof: The function ''ne (ß, Co, W, S2)||/BM(>8, W) is contin-
 uous in W and fì. Be( W, ñ) is the supremum of continuous
 functions, and therefore is lower semicontinuous (Yeh 2000,
 p. 274).

 Claim 3: The function c(a , W2, x ) is lower semicontinuous in
 {W2, x}.

 Proof: The function lc c/tr(W2)<jc is an indicator function of
 an open set, and therefore lower semicontinuous in {W2,Jt}.

 The function F^ļ^a) is continuous in W2 and greater than
 0. Hence, the product ^ļV2(a)lc/c/tr(W2)<jc is lower semicon-
 tinuous in (W2, x) for any fixed a. c(a, W2, x) is a supremum
 of lower semicontinuous functions, and therefore lower semi-
 continuous in (W2, x) (Yeh 2000, p. 274). c(a, W2, x) is also
 clearly nondecreasing in Jt.

 Proof of Result: From the lower semicontinuity of B( W, ÍŽ)
 and the continuous mapping theorem, it follows that

 min(Bď(W, fì), BeÇW, fì)) Be{ W, fì). Similarly, for any

 (W2, x) (W2, x), the continuous mapping theorem implies
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 that min(c(a, W2, x ), c(a, W2, x)) -*■ c(a, W2, x). Then

 P (ieff > c(a, W2, Be{ W, ñ)/r) (A. 11)

 5 P^eff > min^c W2, ; (A.12)

 (A13)

 (a,14)

 = a (A.15)

 Now we prove the second part of the Lemma. We first prove
 a bound for the critical values. Let the upper a point

 of a noncentral x2 with d degrees of freedom and noncen-
 trality parameter x. For any a e [0, 1], c(a , W2, x) < x* =

 (JmaMF^ah ^1¡0)/2(a), . . . , ^(0)/K(a)) + ^)2.
 Let X¡ ~ N(0, 1) iid, / = 1,2, ...,Ä' and let c e A,

 where A = {ceM^| Ylf=' c¡ = 1» c¡ - 0, V/} . From Szekely
 and Bakirov (2003), x e R+ that infceA P(]¡2f (=l c¡Xf < x) =
 P(X%/n(x) < ■*)> where the function n(x) is integer, non-
 decreasing, bounded by K and equal to 1 whenever x >
 1.536. Let Q = ci(%i + M2 a quadratic form in normal
 random variables and write Xl/Li citf = M2- From the triangle
 inequality,

 'K

 F[Q>x] = F ci(x¡ + b¡ )2 > *
 _/ = l

 <P ļ ^c,X,2 + /xj > x .
 Whenever x > /x2 then F[Q > jc]<P[x2(Xi)/«Ui) >
 x'(ļi2, x)], where x'(ß2, x) = (jc1/2 - ļi)2. Moreover, this
 bound is increasing in 'j} whenever x > ¡jl2. Let x* as above.

 Then xļ(x,x*) = max(F^ļ0)(a), FX¡(0)/2^' • • • ' Fx2k(0)/K^-
 Therefore, for /x2 < x

 P[Q > x*] < P {[xluJnixù > xt(x, x*)] < a.

 Now assume that Be(W, fì) is bounded in probability. Then
 c(a , W2, Be( W, fì)) is bounded above in probability by some
 c*. Then

 min[P(Feff > c(a, W2, Be( W, ñ)/r))),

 PC^eff > C*)] ^ P(F;ff > c*). (A. 16)

 But then by the triangle inequality

 P(Fe*ff > c*) > P > VF + Ci Xf j ' (A- 1 7)
 where c, are the eigenvalues of W2 and X¡ are iid standard
 normal. The right-hand side in (A. 17) clearly converges to 1 as
 /x2 -> 00, proving the second part of the Lemma.

 SUPPLEMENTARY MATERIALS

 • [A Robust Test for Weak Instruments: Supplementary Mate-
 rials.]. Computational details and additional results. (PDF)

 • [Files201200717.zip] MATLAB and STATA code to compute
 figures, tables and critical values. (Zip file)
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