
Data Cleaning

Nicholas Ray

2024-09-23

Tests

When deciding on a hypothesis test, the “goodness” of a test is typically determined by evaluating the
probability of rejecting the null hypothesis if it were true (denoted α and called the level or size of a test
[type I error]) and the probability of failing to reject the null hypothesis if it were false (denoted β [type II
error]).

There is a trade off between the probabilities α and β. If you decrease the level of significance such that α
is smaller, it becomes harder to reject the null and you will fail to reject a truly false null hypothesis more
often (i.e., higher β).

Typically, researchers predetermine the desired probability of rejecting a true null hypothesis (e.g., α = 0.05)
and try to minimize the probability of failing to reject a false null hypothesis- or equivalently- maximize
power (1 − β, the probability of rejecting a false null hypothesis). That is, between two tests with identical
α, we would prefer the test with highest power (smaller β). For a given α, power increases in sample size
and the distance between the alternative and null hypotheses (i.e., all else equal, it is easier to distinguish
between an alternative of 10 and null of 0 than between an alternative of 1 and a null of 0).

t-test

But we have already settled on our preferred test for right now (t-test, using X−µ0
σ̂[X]

). If we want to know
how powerful this test would be for a given alternative (X) and hypothesized null (µ0), we need to fix α and
know σ̂[X]. For X = 1, µ0 = 0, α = 0.05 and σ̂[X] = 0.5, our test statistic (t-stat or T ) for our t-test would
be:

X − µ0

σ̂[X]
= 1 − 0

0.5 = 2.

We know this t-stat is distributed standard normal, so α gives us known critical values (z). To figure out
our theoretical power, or the probability of rejecting the null if were truly false, we need the probability that
our t-stat falls within the rejection region given by z. For a two tailed test, our test statistic falls in the
rejection region when T < −z and T > z. So, we want to (sort of) plug in the areas −T − z and T + z into
the cumulative distribution function (CDF) for the standard normal (Φ). Because the CDF is evaluated as
Pr[x ≤ X], we need to evaluate the distance between T and z at 1-CDF to find something like T + z.

#t
t=(1-0)/0.5
#z
z=qnorm(0.05/2,lower.tail=F)
#pr(t<-z) (CDF evaluated at -T-z)
pnorm(-z-t)
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## [1] 3.748053e-05

#pr(t>z) (1-CDF evaluated at t+z)
1-pnorm(z-t)

## [1] 0.5159678

#together:
pnorm(-z-t)+1-pnorm(z-t)

## [1] 0.5160053

For more details, please see Matt’s solution to homework 2.3 when it is uploaded.

Cleaning Data

The rest of lab will be discussing basic cleaning skills, mostly in tidyverse. In the first section we will talk
through chapter 3 from Wickham, Cetinkaya-Rundel, and Grolemund (2023), and I encourage you to read
it because they do it better than me.

R for Data Science, Chapter 3

library(nycflights13)
library(tidyverse)

flights<-nycflights13::flights
View(flights)

# operations on rows ###########################################################
flights |>

filter(carrier == "DL")
flights |>

arrange(month, day, dep_time)
flights |>

distinct(origin, dest)
flights |>

count(month, day)

# operations on columns ########################################################
flights |>

mutate(speed = distance / air_time * 60)
flights |>

select(arr_time)
flights |>

rename(departure = dep_time)
flights |>

relocate(day, month, year)

# multiple verbs, group_by() ###################################################
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flights |>
filter(carrier == "DL") |>
group_by(month) |>
arrange(day) |>
View()

# summarize() ##################################################################
flights |>

filter(carrier == "AA" | carrier == "DL") |>
group_by(year, month, day, carrier) |>
summarize(average_delay = mean(dep_delay, na.rm=T))

Another Example

Here’s another example of cleaning somewhat “wild” trade data (OECD 2024). I typically do things some-
what differently (everyone does) and it may not be the best but I want to share some tricks with you.

#using the here() package
library(here);library(tidyverse)
trade<-read.csv(here("data","trade.csv"))

#useful base R way to edit rows that match a certain criteria
trade["Partner.country"][trade["Partner.country"]=="China (People’s Republic of)"]<-"China"

#select() can do the same thing as rename() and relocate() at once, and use column numbers
trade<-trade %>%

select(country=6,year=TIME_PERIOD,type=Flow,partner=10,value=19)

#case_when() is tidyverse's ifelse() and is very useful for creating new variables based only on some row values of other variables
imports<-trade %>%

filter(type=="Imports") %>%
group_by(country,year) %>%
mutate(imports_from_china=case_when(partner=="China"~value))

#a sometimes better combo of base R and tidyverse to do a similar thing
imports<-trade %>%

filter(type=="Imports") %>%
group_by(country,year) %>%
mutate(imports_from_china=sum(value[partner=="China"],na.rm=T),

total_imports=sum(value[partner=="World"],na.rm=T))

#can operate on a data.frame within a function
ggplot(filter(imports,country=="Japan")) +

geom_line(aes(x=year,y=imports_from_china,color="China"))+
geom_line(aes(x=year,y=total_imports,color="Total"),linetype="dashed")+
labs(title="Imports to Japan",x="Year",y="Imports (1000's $)",color="From")+
theme_bw()
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#can also feed data.frame straight to ggplot()
imports %>%

filter(country=="Japan") %>%
ggplot(.) +
geom_line(aes(x=year,y=imports_from_china,color="China"))+
geom_line(aes(x=year,y=total_imports,color="Total"),linetype="dashed")+
labs(title="Imports to Japan",x="Year",y="Imports (1000's $)",color="From")+
theme_bw()
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#lagging rows is very useful
exports<-trade %>%

filter(type=="Exports",partner=="World") %>%
group_by(country) %>%
arrange(country,year) %>%
mutate(value_year_before=dplyr::lag(value),

growth=((value-value_year_before)/value_year_before)*100)

#one useful function for plotting observations over time on several units
library(panelr)
countries<-unique(exports$country)
exports %>%

filter(country %in% countries[1:5]) %>%
line_plot(.,growth,id="country",wave="year",overlay=F,add.mean=T,line.size=1)+
labs(y="Year over Year Export Growth (%)")
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